期刊文献+

一种改进的组合SOFM-SVR股票价格预测模型 被引量:5

AN IMPROVED COMBINED SOFM-SVR MODEL FOR STOCK PRICE PREDICTION
下载PDF
导出
摘要 股票市场价格预测一直以来都被认为是金融时序预测领域的一项具有挑战性的工作。综合回归支持向量机SVR和自组织特征函数(SOFM)技术,并引入基于过滤的特征选择算法确定重要的输入变量,在SVR核函数的参数选择上采用粒子群优化算法(PSO)。SOFM算法将训练样本聚类,然后分别应用SVR来预测股票价格走势。最后应用上海A股的浦发银行日数据来做股票价格日预测,实验结果表明,经过改进的SOFM-SVR模型与之前的SOFM-SVR模型相比,在预测精度和训练时间上都有了较大的提高。 Stock market price prediction is regarded as a challenging task of the financial time series prediction process.In this paper we synthesize regressive SVR with self-organizing feature map(SOFM) technique,introduce filter-based feature selection algorithm to choose important input attributes,and adopt PSO to choose the best parameters of SVR kernel function.We use SOFM algorithm to train the samples clustering,and employ SVR respectively to predict the price trend of stock.In the end the daily data of Pudong Development Bank dataset of Shanghai A share market are employed to make the daily price prediction.Experiment results show that the improved SOFM-SVR model achieves a considerable melioration over the traditional SOFM-SVR model in average prediction accuracy and training time.
出处 《计算机应用与软件》 CSCD 2010年第5期172-175,178,共5页 Computer Applications and Software
关键词 组合预测 SOFM-SVR 特征选择 PSO算法 Combined prediction SOFM-SVR Feature selection Particle swarm optimization(PSO)
  • 相关文献

参考文献13

  • 1Kim K J,Han I.Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[J].Expert Systems with Applications,2000,19(2):125-132. 被引量:1
  • 2Quah T S,Srinivasan B.Improving returns on stock investment through neural network selection[J].Expert Systems with Applications,1999,17(4):295-301. 被引量:1
  • 3Roman J,Jameel A.Backpropagation and recurrent neural networks in financial analysis of multiple stock market returns[C] //In IEEE system sciences proceedings of the twenty-ninth Hawaii international conference.Hawaii,USA,1996(2):454-460. 被引量:1
  • 4Cao L.Support vector machines experts for time series forecasting[J].Neurocomputing,2003,51:321-339. 被引量:1
  • 5Huang W,Nakamori Y,Wang S Y.Forecasting stock market movement direction with support vector machine[J].Computers and Operations Research,2005,32(10):2513-2522. 被引量:1
  • 6Tay F E H,Cao L J.Application of support vector machines in financial time series forecasting[J].Omega,2001,9(4):309-317. 被引量:1
  • 7李朝荣,张鹰,张安妮.基于PSO算法的神经网络集成入侵检测系统[J].计算机工程,2007,33(14):123-124. 被引量:7
  • 8Tay F E H,Cao L J.Improved financial time series forecasting by combining support vector machines with self-organizing feature map[J].Intelligent Data Analysis,2001,5(4):339-354. 被引量:1
  • 9Cheng-Lung Huang,Cheng-Yi Tsai.A hybrid SOFM-SVR with a filter-based feature selection[J].Expert Systems with Applications,2009(16):1529-1539. 被引量:1
  • 10丁春荣,杨宝华.基于SOFM网络的改进K-均值聚类算法[J].科技导报,2009,27(10):61-63. 被引量:3

二级参考文献19

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2Vapnik V. An Overview of Statistical Learning Theory [J ]. IEEE Trans on Neural Networks, 1999, 10 (5) :988-999. 被引量:1
  • 3Christopher J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition [J ]. Data Mining and Knowledge Discovery , 1998, 2 (2) : 121-167. 被引量:1
  • 4Reyna R A, Hernandez N, Esteve D,et al. Segmenting images with support vector machines.In Proceedings of 2000 International Conference on Image Processing,Vancover, BC,Canada,2000,1 (1):820- 823. 被引量:1
  • 5Valentini A, Zhang Hongjiang. Automatic image orientation detection.IEEE Trans on Image Processing,2002,11(7):746-755. 被引量:1
  • 6Vladimir Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks (S0893-6080), 2004, 17(1) : 113-126. 被引量:1
  • 7Vapnik V. Statistical learning theory [M]. New York: Wiley, 1998. 被引量:1
  • 8B stun, W J Melssen. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Analytical Chimica Acta (S0003-2670), 2005,544(1-2) : 292-305. 被引量:1
  • 9Kumiawan A,Benech N,Tao Y F.Towards high-dimensional clustering[J].COMP,1999(11):I-2. 被引量:1
  • 10Pena J,Lozano J,Larranaga P.An empirical comparison of four initialization methods for the K-Means algorithm[J].Pattern Recognition Letters,1999,20(10):1027-1040. 被引量:1

共引文献12

同被引文献51

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部