期刊文献+

改进的加权型支持向量回归方法 被引量:1

Improved weighted support vector regression
下载PDF
导出
摘要 分析现有支持向量回归方法的缺点和不足,给出一种改进的加权型支持向量回归方法及其Wolfe对偶形式.引入凸函数降低对核函数的要求,并讨论当这些凸函数取不同形式时支持向量回归机的变形,为得到更为灵活的回归曲线提供有效工具.同时对广泛的支持向量回归模型、优化支持向量模型的泛化能力和运算速度等方面进行讨论. The disadvantage and insufficiency of the existing methods of support vector regression (SVM) are analyzed. An improved weighted support vector regression and its Wolfe Dual is presented. The convex functions and its reformation depending on the various types of the kernel function are introduced to decrease the limitation of the kernel function. It is helpful to get more effective in searching flexible regression function. The generalization of the support vector regression model, the optimization of the generalization capacity, and the training speed are discussed.
作者 李忠浩 王宇
出处 《计算机辅助工程》 2006年第1期31-33,共3页 Computer Aided Engineering
关键词 支持向量机 回归 凸函数 核函数 support vector machine (SVM) regression convex function kernel function
  • 相关文献

参考文献8

二级参考文献50

  • 1[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995. 被引量:1
  • 2[2]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning,1995,20:273-297. 被引量:1
  • 3[4]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167. 被引量:1
  • 4[5]Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection[A]. Proceedings of IEEE Conference on CVPR'97[C].Puerto Rico,1997.130-136. 被引量:1
  • 5[6]Joachims T. Making Large-Scale SVM Learning Practical[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999. 被引量:1
  • 6[7]Platt J C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.185-208. 被引量:1
  • 7[8]Keerthi S S. Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computaion,2001,13(3):637-649. 被引量:1
  • 8[9]Chih Wei Hsu, Chih Jen Lin.A Simple Decomposition Method for Support Vector Machines[J]. Machine Learning, 2002,46 (1):291-314 . 被引量:1
  • 9[10]Jain Xiong Dong, Ching Y S, Adam K. A Fast SVM Training Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003,17(3):367-384. 被引量:1
  • 10[11]Suykens J A K. Optimal Control By Least Squares Support Vector Machines[J]. Neural Networks, 2001,14(1):23-25. 被引量:1

共引文献58

同被引文献12

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部