期刊文献+

基于流形判别分析的全局保序学习机

Global Rank Preservation Learning Machine Based on Manifold-Based Discriminant Analysis
下载PDF
导出
摘要 当前主流分类方法在分类决策时无法同时考虑样本的全局特征和局部特征,而且大多算法仅关注各类样本的可分性,往往忽略样本之间的相对关系。为了解决上述问题,提出了基于流形判别分析的全局保序学习机。该方法引入流形判别分析来反映样本的全局特征和局部特征;通过保持各类样本中心的相对关系不变进而实现保持全体样本的先后顺序不变;借鉴核心向量机有关理论和方法,通过建立所提方法与核心向量机对偶形式的等价关系实现大规模分类。人工数据集和标准数据集上的比较实验验证了该方法的有效性。 In order to solve the problems that many traditional classification methods confronted, a global rank preservation learning machine (GRPLM) based on manifold-based diseriminant analysis is proposed in this paper. In GRPLM, the manifold-based discriminant analysis (MDA) is introduced to represent the samples' global and local characteristic; the relative relationship of different class centers is taken into consideration in order to preserve the samples' ranks; the equivalent relation between the QP form of GRPLM and core vector machine (CVM) is analyzed in order to broaden the usage of GRPLM from small- and medium-scale to large-scale. Comparative experiments on several standard datasets verify the effectiveness of the proposed methods.
作者 张静 刘忠宝
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期911-916,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61202311) 山西省高等学校科技创新项目(2014142)
关键词 全局保序 大规模分类 流形判别分析 支持向量机 global rank preservation large-scale classification manifold-based discriminant analysis (MDA) support vector machine (SVM)
  • 相关文献

参考文献23

  • 1QUINLAN J R. C4.5: Programs for Machine Learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993. 被引量:1
  • 2RASTOGI R, SHIM K. Public: a decision tree classifier that integrates building and pruning[C]//Proc of the Very Large Database Conference (VLDB). New York: [s.n.], 1998: 404-415. 被引量:1
  • 3MEHTA M, AGRAWAL R, RISSANEN J. SLIQ: a fast scalable classifier for data mining[C]//Proc of International Conf Extending Database Technology(EDBT'96). France: [s.n.], 1996: 18-32. 被引量:1
  • 4GEHRKE J, RAMAKRISHNAN R, GANTI V. Rainforest: a framework for fast decision tree construction of large datasets[J]. Data Mining and Knowledge Discovery, 2000, 4(2-3): 127-162. 被引量:1
  • 5LIU B, HSU W, MA Y. Integrating classification and association rule[C]//Proc of the 4th International Conf on Knowledge Discovery and Data Mining. New York, USA: AAAI Press, 1998: 80-86. 被引量:1
  • 6LI W M, HAN J, JIAN P. CMAR: Accurate and efficient classification based on multiple class association rules[C]//Proc of IEEE International Conf on Data Mining. Washington D C: IEEE Computer Society, 2001: 369-376. 被引量:1
  • 71N X, HAN J. Classification based on predictive association rules[C]//SIAM International Conf on Data Mining. San Francisco: [s.n.], 2003: 331-335. 被引量:1
  • 8VAPNIK V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995. 被引量:1
  • 9邓乃扬,田英杰著..支持向量机:理论、算法与拓展[M].北京:科学出版社,2009:244.
  • 10PAL M, FOODY G M. Feature selection for classification of hyper spectral data by SVM[J]. IEEE Trans on Geoscience and Remote Sensing, 2010, 48(5): 2297-2307. 被引量:1

二级参考文献19

  • 1Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233. 被引量:1
  • 2Alibeigi M, Hashemi S, and Hamzeh A. DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets[J]. Data Knowledge Engineering, 2012, 81/82: 67-103. 被引量:1
  • 3Friedman H. Regularized discriminant analysis[J]. Journal of the American Statistical Association, 1989, 84(405): 165 175. 被引量:1
  • 4Li M and Yuan B. 2D-LDA: a novel statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532. 被引量:1
  • 5Ye J P and Xiong T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis[J]. Journal of Machine Learning Research, 2006, 7: 1183-1204. 被引量:1
  • 6Yu H and Yang J. A direct LDA algorithm for high- dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(11): 2067-2070. 被引量:1
  • 7Wan M H, Lai Z H, and Jin Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668. 被引量:1
  • 8Ji S W and Ye J P. Generalized linear discriminant analysis: a unified framework and efficient model selection[J]. IEEE Transactions on Neural Networks, 2008, 19(10): 1768-1782. 被引量:1
  • 9Chen L F, Liao H Y M, Ko M T, et al. A new LDA-based face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10): 1713-1726. 被引量:1
  • 10Belhumeur P N, Hespanha J P, and Kriegman D J. Eiegnfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部