期刊文献+

基于最小流形类内离散度支持向量机的110m栏成绩预测方法研究 被引量:1

Research on Prediction of Achievements in 110 m Hurdle based on Minimum Manifold-Based within-Class Scatter Support Vector Machine
原文传递
导出
摘要 针对支持向量机在成绩预测时面临的泛化能力不足问题,提出基于最小流形类内离散度支持向量机M2 SVM。实验选取2000-2009年59次刘翔110m栏成绩作为研究对象,首先将前54次成绩作为训练样本并对模型进行训练得到分类标准,然后将后5次成绩作为测试样本并依次输入模型,比较预测结果与实际结果之间的相似程度,从而说明所提方法的有效性。该方法对人才选拔、成绩提升和梯队建设等具有重要意义。 When dealing with the achievement prediction, SVM (Support Vector Machine) suffers from limitation of generalizationcapability. In view of this, Manifold-based within-class Scatter Support Vector Machine (Mz SVM) is proposed and is used in the a-chievement prediction of 110 m hurdle. 59 achievements of Liu Xiang from the year 2000 to 2009 are collected and construct the ex-perimental dataset. Firstly, the first 54 achievements are used as training set and applied to build the prediction model; the last 5 a-chievements are taken as test set. The effectiveness of Mz SVM is verified by the similarity of the expected results and the actual re-suits. The proposed method MzSVM is important to talent selection, achievement improvement and echelon construction.
作者 张雅清
机构地区 太原学院数学系
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期165-168,共4页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.61202311) 山西省社会经济统计科研课题(No.KJ[2014]036)
关键词 支持向量机 最小流形类内离散度 110M栏 成绩预测 Support Vector Machine (SVM) minimum manifold-based within-class scatter Support Vector Machine (MzSVM) 110 m hurdle- achievement prediction
  • 相关文献

参考文献7

二级参考文献58

共引文献80

同被引文献55

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部