期刊文献+

基于自组织特征映射网络的纹理分类研究

A Study of Texture Classification Based on Self-Organizing Feature Maps
下载PDF
导出
摘要 提出了基于自组织特征映射网络(SOM)的纹理分类方法。采用了适合纹理分析的纹理谱(TS)的概念,并在分类过程中引入了纹理谱特征向量,纹理谱向量是TS经过降维处理得到的.该特征向量反映了空间模式的纹理特征.在学习(训练)与分类识别中,采用了神经元网络模型.与TS相对应的特征向量重复地送入SOM网络的输入端,网络的权向量则逐渐地将样本值聚类到各自的样本中心.计算机模拟实验表明,作者提出的纹理分类方案十分有效而且实用.本方案计算量小,学习周斯短,识别率高.本文最后给出了实验结果及分析. This paper presents a method of texture classification based on Self --Organizing Feature Maps (SOM). The concept of Texture Spectrum (TS) is adopted. In classification,TS Vector which is obtained from TS through decreasing dimension is introduced. TS vector indicates texture character of space pattern. Neural Network (NN) pattern is used in learning (training) and classification,TS vector which is correponding to TS is sent into the inpUt of SOM repeatly and then the sample values are gradually clustering into the center of every class of samples by SOM weight vector. Computer experiments indicate that method presented in this paper is effective and practical With its less computation,less learning time and high classification ratio' Finally the experimental results and analysis are given.
作者 于明 陈冀川
出处 《河北工学院学报》 1994年第1期34-43,共10页 Journal of Hubei Polytechnic University
关键词 纹理 分类 纹理谱 数字图像 SOM Self - Organizing Feature Maps (SOM ), Texture, Classification, Texture Spectrum (TS),Texture Unit,Training Sample,Clustering,Weight vector.
  • 相关文献

参考文献1

  • 1周冠雄编著..计算机模式识别 结构方法[M],1987:250.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部