期刊文献+

基于视觉显著性的彩色图像分割 被引量:2

The Segmentation of Color Image Method Based on Visual Saliency
下载PDF
导出
摘要 为了提高图像显著性检测的准确性,从数学模型上探索显著性的多特征空间.利用多尺度特征提取算法获得低层视觉特征,对特征矩阵用低秩矩阵恢复理论提取显著图,并在自底向上模型基础上融合了高层视觉特征,由高层视觉特征构成一幅权重的显著图.提高了显著度和显著目标的检测性能.通过自适应阈值算法对视觉显著目标进行分割.实验结果表明,该模型比传统的模型提取的显著目标更完整、更准确. In order to improve the accuracy of image saliency detection, we explore the consistency of multi-features space from the view of mathematical model. We use the muhi- scale feature extraction algorithm to obtain the low level visual features, introduce the theory of low rank matrix recovery into the saliency map extraction, and incorporate the low level visual features and the high-level visual features. The high-level visual features are fused to compose a prior map and are treated as a prior term in the objective function to improve the performance. The image saliency objects are segmented by using the adaptive threshold algorithm. Extensive experiments show that our model can comfortably achieve more performance to the existing methods.
出处 《南华大学学报(自然科学版)》 2015年第3期73-77,共5页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金项目(2015JJ3110 13JJ9008) 湖南省教育厅基金资助项目(10C1144) 湖南省衡阳市科技计划基金资助项目(2011KG66)
关键词 彩色图像分割 视觉显著性 视觉特征 color image segmentation visual saliency visual features
  • 相关文献

参考文献13

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visu- al attention for rapid scene analysis [ J]. Pattern Analysis and Machine Intelligence, 1998,20 ( 11 ) : 1254-1259. 被引量:1
  • 2Achanta R, Estrada F,Wils P, et al. Salient region detec- tion and segmentation [ C ]. International Conference on Computer Vision Systems. Greece : Santorini,2008:66-75. 被引量:1
  • 3Hou X D, Zhang L Q. Saliency detection:a spectral re- sidual approach [ C ]. IEEE Conference on Computer Vi- sion and Pattern Recognition. USA : Minneapolis ,2007 : 1 - 8. 被引量:1
  • 4Harel J, Koch C, Perona P. Graph-based visual saliency [ J ]. Advances in Neural Information Processing Sys- tems, 2007,19 : 545-552. 被引量:1
  • 5Shen X H, Wu Y. A unified approach to salient object detection via low rank matrix recovery [ C ]. IEEE Confer- ence on Computer Vision and Pattern Recognition. RI: Providence ,2012 : 1-8. 被引量:1
  • 6He R,Hu B G,Zheng W S,et al. Robust principal com- ponent analysis based on maximum correntropy criterion [ J ]. IEEE Transactions on Image Processing, 2011,20 (6) : 1485-1494. 被引量:1
  • 7Yan J, Zhu M, Liu H, et al. Visual saliency detection via sparsity pursuit [ C ]. 17th IEEE International Conference on Image Processing. China:Hongkong,2010,26-29. 被引量:1
  • 8Wright J, Ganesh A, Rao S, et al. Robust principal com- ponent analysis : exact recovery of corrupted low-rank ma- trices via convex optimization [ C ]. Advances in Neural Information Processing Systems,2009,22:2080-2088. 被引量:1
  • 9Ali B. Boosting bottom-up and top-down visual features for saliency estimation[ J ]. Proceedings of the IEEE Comput- er Society Conference on Computer Vision and Pattern Recognition. USA : Washington DC ,2012:438-445. 被引量:1
  • 10Cheng M M, Mitra N J, Huang X L, et al. Global con- trast based salient region detection [ J ]. IEEE Transac- tions on Pattern Aanalysis and Machine Intelligence, 2015,37(3) :569-582. 被引量:1

二级参考文献31

  • 1Itti L, Koch C, Niebur E. A model of saliencybased vi- sual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254 - 1259. 被引量:1
  • 2Zhang D, Islam M, Lu G. A review on automatic image annotation techniques. Pattern Recognition, 2012, 45(1): 346-362. 被引量:1
  • 3Ayadi M, Kamel M, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognition, 2011, 44(3): 572-587. 被引量:1
  • 4Toet A. Computational versus psychophysical bottom-up image saliency: a comparative evaluation study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2131-2146. 被引量:1
  • 5Harel J, Koch C, Perona P. Graph-based visual saliency. In: Proceedings of the 21st Annual Conference on Neural Infor- mation Processing Systems. Vancouver, Canada: The MIT Press, 2007. 545-552. 被引量:1
  • 6Achanta R, Estrada F, Wils P, Susstrunk S. Salient region detection and segmentation. In: Proceedings of the 6th Inter- national Conference on Computer Vision Systems. Santorini, Greece: Springer, 2008. 66-75. 被引量:1
  • 7Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency- tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1597-1604. 被引量:1
  • 8Hou X, Zhang L. Saliency detection: a spectral residual approach. In: Proceedings of the IEEE International Con- ference on Computer Vision and Pattern Recognition. Min- neapolis, USA: IEEE, 2007. 1-8. 被引量:1
  • 9Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. In: Proceedings of the IEEE International Con-ference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2376-2383. 被引量:1
  • 10Liu T, Sun J, Zheng N, Tang X, Shum H Y. Learning to de- tect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. 被引量:1

共引文献37

同被引文献10

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部