期刊文献+

基于区域稀疏回归模型的三维人脸特征提取算法 被引量:1

Extraction Algorithm Based on Region Sparse Regression Model 3D Facial Feature
下载PDF
导出
摘要 人脸识别是生物特征识别领域的一个重要研究内容,并因为具有深厚的学术背景和广泛的应用前景从而被大学者关注。根据三维人脸不变特性描述的数据特点,引入了区域稀疏表示和低秩矩阵恢复理论。通过谱回归和矩阵完整性约束,从带噪声的原始数据中得到干净的输入数据,获得鲁棒的低秩投影矩阵,并将低维特征矢量应用在三维人脸识别中。实验结果说明本文提出的三维人脸特征提取算法具有更多的辨别性、鲁棒性和通用性,具有良好的三维数据表达能力。 Face recognition is an important research content in the field of biometric recognition,and it has been concerned by universities because of its profound academic background and wide application prospect. According to the data characteristics of 3D face invariant features,the region sparse representation and low rank matrix recovery theory are introduced. By regression and matrix spectral integrity constraints derived from the raw data in a clean noisy input data,obtained robust low rank projection matrix,and low-dimensional feature vector used in the three-dimensional face recognition. The experimental results show that the proposed 3D face feature extraction algorithm has more discrimination,robustness and generality,and has a good ability to express 3D data.
出处 《激光杂志》 北大核心 2015年第11期67-70,共4页 Laser Journal
基金 2015年河南省科技计划软科学项目(152400410598) 河南省教育厅科学技术研究重点项目(15A520055)
关键词 图像特征提取 区域稀疏 矩阵 三维数据 image feature extraction region sparse matrix three-dimensional data
  • 相关文献

参考文献12

  • 1Hu Han,Shiguang Shan,Xilin Chen,Wen Gao.A comparative study on illumination preprocessing in face recognition[J]. Pattern Recognition . 2012 被引量:3
  • 2Kevin W. Bowyer,Kyong Chang,Patrick Flynn.A survey of approaches and challenges in 3D and multi-modal 3D<ce:hsp sp="0.25"/>+<ce:hsp sp="0.25"/>2D face recognition[J]. Computer Vision and Image Understanding . 2005 (1) 被引量:1
  • 3Yingjie Wang,Chin-Seng Chua,Yeong-Khing Ho.Facial feature detection and face recognition from 2D and 3D images[J].Pattern Recognition Letters.2002(10) 被引量:2
  • 4KI Chang,KW Bowyer,PJ Flynn.An evaluation of multimodal 2D 3D face biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005 被引量:1
  • 5Zhen Lei,Shengcai Liao,M. Pietika?inen,S. Z. Li.Face Recognition by Exploring Information Jointly in Space, Scale and Orientation. IEEE Transactions on Image Processing . 2011 被引量:1
  • 6Wright, John,Yang, Allen Y.,Ganesh, Arvind,Sastry, S. Shankar,Ma, Yi.Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2009 被引量:9
  • 7Dantone M,Gall J,Fanelli G,et al.Real-time facial feature detection using conditional regression forests. 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . 2012 被引量:3
  • 8Deng C,He X F,Han J W.Spectral regression for efficient regularized subspace learning. Proc.of IEEE International Conference on Computer Vision . 2007 被引量:1
  • 9Zhanfeng Yue,Wenyi Zhao,Rama Chellappa.Pose-Encoded Spherical Harmonics for Face Recognition and Synthesis Using a Single Image. EURASIP Journal on Advances in Signal Processing . 2008 被引量:1
  • 10Timo Ahonen,Abdenour Hadid,Matti Pietikainen.Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2006 被引量:3

共引文献13

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部