期刊文献+

基于空间相关性的图像分割算法研究 被引量:6

Image segmentation algorithm based on spatial correlation
下载PDF
导出
摘要 提出一种充分利用图像的空间相关性来达到高效快速地进行图像分割的新方法。利用均值漂移算法对图像进行分割形成过度分割的区域,并使这些区域保持理想的边缘和空间相关部分,用图结构表示的区域相邻图来代替分割的区域。和K-均值算法的思想一样,迭代循环置信传播算法以其具有收敛速度快的特点被用于最小化开销函数、整合过度分割的区域和获得最终的分割结果。基于分割区域而不是图像像素的图像聚类分割方法可降低噪声敏感性,同时提高图像分割质量。与FCM和MRF算法相比较,该算法在复杂场景图像中显示了更好的分割性能。 This paper presented a full use of spatial image correlation to achieve efficient fast image segmentation method.First of all,it used mean shift image segmentation algorithm to formate an excessive segmentation,so that it made these areas to maintain the desired edge and spatial correlation part.Then,it used the graph structure of the region adjacency graph instead of segmentation.Like K-means algorithm,iterative belief propagation algorithm had the advantages of fast convergence was used to minimize the cost function,integrate over segmentation and obtain the final segmentation result.Based on the segmentation of the region rather than the image pixel,image clustering segmentation method could reduce the noise sensitivity,while improving the quality of image segmentation.Comparing with FCM and MRF algorithm,the new algorithm in entropy evaluation standard especially complex scene images shows a better performance.
出处 《计算机应用研究》 CSCD 北大核心 2013年第1期314-317,共4页 Application Research of Computers
基金 湖北省教育厅优秀中青年基金资助项目(Q20111311)
关键词 图像分割 均值漂移 循环置信传播 空间属性 image segmentation mean shift loopy belief propagation spatial property
  • 相关文献

参考文献23

  • 1PAL N R, PAL S K. A review on image segmentation techniques [ J ]. Pattern Recognition, 1993,26 ( 9 ) : 1277-1294. 被引量:1
  • 2DUDA R O, HART P E, STORK D G. Pattern classification [ M ]. 2nd ed. New York : Wiley Interscience, 2000 : 10- 30. 被引量:1
  • 3FAN Jian-ping, ZENG Gui-hua, BODY M, et al. Seeded region growing: an extensive and comparative study [ J ]. Pattern Recogni-tion Letters ,2005,26 (12) : 1139-1156. 被引量:1
  • 4JACOBS D W, WEINSHALL D, GDALYAHU Y. Classification with nonmetric distances: image retrieval and class representation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 20]0,22(6) :583-600. 被引量:1
  • 5YU S X, LEE T S, KANADE T. A hierarchical Markov random field model for figure-ground segregation [ C ]//Lecture Notes in Computer Science, vol 2134. Berlin: Springer,2011 : 118-130. 被引量:1
  • 6WANG X, GRIMSON E. Spatial latent Dirichlet allocation [ J ]. Ad- vances in Neural Information Processing Systems, 2007, 34 (8) :10-20. 被引量:1
  • 7SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2010,32 (4) :888-905. 被引量:1
  • 8TREdEAU A, COLANTONI P. Regions adjacency graph applied to color image segmentation[ J]. I EEE Trans on Imago Processing, 2010,9(3) :735-744. 被引量:1
  • 9BOYKOV Y, VEKSLER O, ZABIH R. Fast approximate energy mini- mization via graph cuts[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2011,33 ( 11 ) : 1222-1239. 被引量:1
  • 10DING Jui-di, MA Ru,ning, CHEN Song-can. A scale-based connected coherence tree algorithm for image segmentation[ J]. IEEE Trans on Image Processing,2008,17(2) :204,216. 被引量:1

二级参考文献66

  • 1薄华,马缚龙,焦李成.基于免疫算法的SAR图像分割方法研究[J].电子与信息学报,2007,29(2):375-378. 被引量:6
  • 2LEE J S,JURKEVICH I. Segmentation of sar images[ J ]. I EEE Trans on Geoscience and Remote Sensing,1989, 27(6):674-680. 被引量:1
  • 3DU G,YEO T S. A novel launarity estimation method applied to SAR image segmentation[ J]. IEEE Trans on Geoscience and Remote Sensing ,2002,40(12) :2687-2691. 被引量:1
  • 4FJORTOFT R, MARTHON P, LOPES A, et al. An optimal multiedge detector for SAR image segmentation [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1998,36(3 ) :793-802. 被引量:1
  • 5ZHU S C, YUILLE A. Region competition:unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 13(9) :884-900. 被引量:1
  • 6SMITS P C, DELLEPIANE S G. Diseontinuity-adaptive Markov random field model for the segmentation of intensity SAR images[J]. IEEE Tmns on Geoscience and Remote Sensing, 1999,37( 1 ) :793- 802. 被引量:1
  • 7RISSANEN J. Stochastic complexity in statistica inquiry [ M ]. Singa- pore : World Scientific, 1989:223-239. 被引量:1
  • 8SHANNON C E. A mathematical theory of communication[ J]. Bell System Technical deuma1,1948,27(7) :379-656. 被引量:1
  • 9OLIVER C, QUEGAN S. Understanding synthetic aperture radar image [ M ]. Boston: Arrech House, 1998 : 130. 被引量:1
  • 10LECLERC Y G. Constructing simple stable descriptions for image par- titioning [ J]. International Journal of Computer Vision, 1989,3 ( 1 ) :73-102. 被引量:1

共引文献28

同被引文献116

  • 1范九伦,赵凤.灰度图像的二维Otsu曲线阈值分割法[J].电子学报,2007,35(4):751-755. 被引量:150
  • 2李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 3SONKA M,HLAVAC V,BOYLE R.图像处理、分析与机器视觉[M].3版.艾海舟,苏延超,等,译.北京:清华大学出版社,2011. 被引量:11
  • 4汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:134
  • 5HAMMERSLEY J M, CLIFFORD P. Markov fields on finite graphs and lattices [ EB/OL ]. ( 1968 ). http://www, cite ulike, org/group/ 4300/article/2335717. 被引量:1
  • 6BESAY J E. Spatial interaction and the statistical analysis of lattice systems[ J ]. Journal of the Royal Statistical Society B, 1974,36 (2) :192-236. 被引量:1
  • 7STAN Z L. Markov random field modeling in image analysis[ M]. New York : Springer-Verlag, 2009. 被引量:1
  • 8CHEN Fan, TANAKA K, HORIGUCHI T. Image segmentation based on Bethe approximation for Gaussian mixture model[ J]. Interdiscipli- nary Information Sciences ,2005,11 ( 1 ) :17-29. 被引量:1
  • 9CHOI H, BARANIUK R G. Multiscale image segmentation using wavelet-domain hidden Markov models [ J ]. IEEE Trans on Image Processing,2001,10(9) :1309-1321. 被引量:1
  • 10LEVADA A L M, MASCARENHAS N D A, TANNUS A, et al. Spa- tially non-homogeneous potts model parameter estimation on higher-or-der neighborhood systems by maximum pseudo-likelihood [ C ]//Proc of the 23rd Annual ACM Symposium on Applied Computing. New York :ACM Press, 2008 : 1733-1737. 被引量:1

引证文献6

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部