期刊文献+

Estimating the shareholder's terminal payoff based on insurer's solvency ratio in mixed fractional Brownian market

Estimating the shareholder's terminal payoff based on insurer's solvency ratio in mixed fractional Brownian market
下载PDF
导出
摘要 This paper studies the insurer’s solvency ratio model in a class of mixed fractional Brownian motion(MFBM) market, where the prices of assets follow a Wick-It? stochastic differential equation driven by the MFBM, by the method of the stochastic calculus of the MFBM and the pricing formula of European call option for the MFBM, the explicit formula for the expected present value of shareholders’ terminal payoff is given. The model extends the existing results. This paper studies the insurer's solvency ratio model in a class of mixed fractional Brownian motion(MFBM) market, where the prices of assets follow a Wick-It stochastic differential equation driven by the MFBM, by the method of the stochastic calculus of the MFBM and the pricing formula of European call option for the MFBM, the explicit formula for the expected present value of shareholders' terminal payoff is given. The model extends the existing results.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第3期317-324,共8页 高校应用数学学报(英文版)(B辑)
基金 Supported by National Natural Science Foundation of China(71171003,71271003,and 11326121) Natural Science Foundation of Anhui Province(1508085MA02) Teaching Research Project of Anhui Province(2013jyxm111) Opening Project of Financial Engineering Research and Development Center of Anhui Polytechnic University(JRGCKF201502)
关键词 mixed fractional Brownian motion Wick-It stochastic integral solvency ratio financial distress cost mixed fractional Brownian motion,Wick-It stochastic integral,solvency ratio,financial distress cost
  • 相关文献

参考文献7

二级参考文献71

  • 1刘韶跃,杨向群.分数布朗运动环境中标的资产有红利支付的欧式期权定价[J].经济数学,2002(4):35-39. 被引量:32
  • 2薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 3[1]Duncan, T. E. , Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion, I.Theory, SIAM J. Control Optim. 38(2000), 582-612. 被引量:1
  • 4[2]Hu, Y. and B. Oksendal., Fractional white noise calculus and application to finance. Pure Mathematics(Department of Mathematics, University of Oslo, (ISBN 0806-2439), 1999, 10- 99. 被引量:1
  • 5[3]Lin, S. J. , Stochastic analysis of fractional Brownian motion, fractional noises and application, SIAM Review, 10(1997),422-437, 1995. 被引量:1
  • 6[4]Ciprian Necula, Option pricing in a Fractional Brownian Motion Enviroment, Preprint, Academy of Economic Studies Bucharest, Romania, WWW. dofin. ase. ro/. 被引量:1
  • 7Diamond D W. Debt maturity structure and liquidity risk [J]. Quaterly Journal of Economics, 1991, 106:709 -737. 被引量:1
  • 8Opler T, Titman S. Financial distress and corporate performance [J]. Journal of Finance, 1994, 49: 1015-1040. 被引量:1
  • 9Briys E, De Varenne F. Valuing risky fixed rate debt: an extension [J]. Journal of Financial and Quantitative Analysis, 1997, 32:239 -248. 被引量:1
  • 10Krvavych Y. Insurer risk management and optimal reinsurance [D]. Australia: University of New South Wales, 2005. 被引量:1

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部