期刊文献+

European Option Pricing under a Class of Fractional Market 被引量:4

European Option Pricing under a Class of Fractional Market
下载PDF
导出
摘要 In order to price European contingent claim in a class of fractional Black-Scholes market, where the prices of assets follow a Wick-Ito stochastic differential equation driven by the fractional Brownian motion and market coefficients are deterministic functions, the pricing formula of European call option was explicitly derived by the method of the stochastic calculus of tile fractional Brownian motion. A result about fractional Clark derivative was also obtained. In order to price European contingent claim in a class of fractional Black-Scholes market,where the prices of assets follow a Wick-It stochastic differential equation driven by the fractional Brownian motion and market coefficients are deterministic functions,the pricing formula of European call option was explicitly derived by the method of the stochastic calculus of the fractional Brownian motion.A result about fractional Clark derivative was also obtained.
作者 费为银
出处 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期732-737,共6页 东华大学学报(英文版)
基金 National Natural Science Foundation of China(No.10826098) Natural Science Foundation of Anhui Province,China(No.090416225) Anhui Natural Science Foundation of Universities,China(No.KJ2010A037)
关键词 fractional Brownian motion Wick-Ito stochasticintegral fractional It( formula ~ Girsanov thoerem forfractional Brownian motion fractional Clark-Oconetheorem option pricing 部分 Brownian 运动;灯芯 -- 它(o) 随机的积分;部分它(o) 公式;为部分 Brownian 运动的 Girsanov thoerem;部分 Clark-Ocone 定理;选择定价;
  • 相关文献

参考文献11

  • 1费为银.分数Brown运动驱动的随机延迟微分方程解的存在唯一性[J].数学年刊(A辑),2007,28(4):525-536. 被引量:1
  • 2L. Decreusefond,A.S. üstünel.Stochastic Analysis of the Fractional Brownian Motion[J]. Potential Analysis . 1999 (2) 被引量:1
  • 3Shiryaev A N.Essentials of Stochastic Finance:Facts,Models,Theory. . 1999 被引量:1
  • 4Shreve S E.Stochastic Calculus for Finance II:Continuous-Time Models. . 2004 被引量:1
  • 5Hu Y,B Qksendal.Fractional White Noise Calculus and Application to Finance. Infinite Dimensional Analysis Quantum Probabilityand Related Topics . 2003 被引量:1
  • 6Gripenberg G,Norrors I.On the prediction of fractional Brownian motion. Journal of Applied Probability . 1996 被引量:1
  • 7Dai W,Heyde C C.It s For mula with Respect to Fractional Brownian Motion and Its Application. Journal of Applied Mathematics and Stochastic Analysis . 1996 被引量:1
  • 8Elliott RJ,van der Hoek J.A general fractional white noise theory and applications to finance. Mathematical Finance . 2003 被引量:1
  • 9HU Yaozhong,PENG Shige.Backward stochastic differential equation driven by fractional Brownian motion. SIAM Jour-nal on Control and Optimization . 2009 被引量:1
  • 10Nualart D.Stochastic integration with respect to fractional Brownian motion and applications. Contemporary Mathematics . 2003 被引量:1

二级参考文献33

  • 1Mandelbrot B.B.and van Ness J.W.,Fractional Brownian motions,fractional noises and applications[J],SIAM Rev.,1968,10:422-437. 被引量:1
  • 2Mao X.R.,Exponential Stability of Stochastic Differential Equations[M],New York:Marcel Dekker,1994. 被引量:1
  • 3Mémin J.,Mishura Y.and Valkeila E.,Inequality for the moments of Wiener integral with respect to fractional Brownian motions[J],Statist.Prob.Letters,2001,55:421-430. 被引量:1
  • 4Métivier M.and Pellaumail J.,Stochastic Integration[M],New York,London,Toronto:Academic Press,1980. 被引量:1
  • 5Nualart D.,The Malliavin Calculus and Related Topics[M],New York:Springer,1995. 被引量:1
  • 6Nualart D.and Rascanu A.,Differential equations driven by fractional Brownian motion[J],Collect.Math.,2002,53:55-81. 被引量:1
  • 7Oksendal B.,Stochastic Differential Equations[M],Springer-Verlag,2000,5th edition. 被引量:1
  • 8Pipiras V.and Taqqu M.S.,Integration questions related to fractional Brownian motion[J],Probab.Theory Rel.Fields,2000,118:251-291. 被引量:1
  • 9Rogers L.C.G.,Arbitrage with fractional Brownian motion[J],Math.Finance,1997,7:95-105. 被引量:1
  • 10Rovira C.and Sanz-Solé M.,The law of the solution to nonlinear hyperbolic SPDE[J],J.Theoret.Probab.,1996,9:863-901. 被引量:1

同被引文献18

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部