期刊文献+

非下采样Shearlet变换与参数化对数图像处理相结合的遥感图像增强 被引量:17

Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model
下载PDF
导出
摘要 针对部分遥感图像整体亮度偏暗、对比度较低的特点,为提高遥感图像的视觉效果和可解译性,提出了一种基于非下采样Shearlet变换(non-subsampled shearlet transform,NSST)和参数化对数图像处理(parameterized logarithmic image processing,PLIP)模型的遥感图像增强方法。首先,遥感图像经非下采样Shearlet变换分解成低频分量和高频分量;然后依据PLIP模型对其低频分量进行增强,提高图像的对比度;同时利用改进的模糊增强方法对高频分量进行增强,突显边缘细节信息。大量试验结果表明,与双向直方图均衡增强、基于平稳小波变换的增强、基于非下采样Contourlet变换的增强等5种图像增强方法相比,本文提出的方法在主观视觉效果和对比度、清晰度等客观定量评价指标两个方面均有优势,能更有效地提高遥感图像的对比度、增强边缘纹理细节信息,视觉效果更佳。 Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpret- ability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing) model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.
出处 《测绘学报》 EI CSCD 北大核心 2015年第8期884-892,共9页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(60872065) 国土资源部地质信息技术重点实验室开放基金(217) 兰州大学甘肃省西部矿产资源重点实验室开放基金(WCRMGS-2014-05) 国土资源部成矿作用与资源评价重点实验室开放基金(ZS1406) 江西省数字国土重点实验室开放基金(DLLJ201412) 江苏高校优势学科建设工程项目~~
关键词 遥感图像 图像增强 非下采样Shea rlet变换(NSST) 参数化对数图像处理(PLIP)模型 模糊 增强 remote sensing image image enhancement non-subsampled Shearlet transform(NSST) parameters logarithmic image processing (PLIP) model fuzzy enhancement
  • 相关文献

参考文献24

  • 1LEE E, KIM S, KANG W, et al. Contrast Enhancement Using Dominant Brightness Level Analysis and Adaptive Intensity Transformation for Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 62-66. 被引量:1
  • 2JANG J H, KIM S D, RA J B. Enhancement of Optical Remote Sensing Images by Subband-Decomposed Multiscale Retinex with Hybrid Intensity Transfer Function[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 983-987. 被引量:1
  • 3巫兆聪,胡忠文,张谦,崔卫红.结合光谱、纹理与形状结构信息的遥感影像分割方法[J].测绘学报,2013,42(1):44-50. 被引量:58
  • 4康牧,王宝树.一种基于图像增强的图像滤波方法[J].武汉大学学报(信息科学版),2009,34(7):822-825. 被引量:24
  • 5熊兴华,钱曾波,陈鹰,陈刚,张丽.基于遗传优化的分段线性影像增强[J].测绘学报,2004,33(4):341-346. 被引量:9
  • 6JOURLIN M, PINOLI J C. A Model for Logarithmic Image Processing[J]. Journal of Microscopy, 1988, 149(1): 21-35. 被引量:1
  • 7PANETTA K A, WHARTON E J, AGAIAN S S. Human Visual System-based Image Enhancement and Logarithmic Contrast Measure[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(1): 174-188. 被引量:1
  • 8PANETTA K, AGAIAN S, ZHOU Y, et al. Parameterized Logarithmic Framework for Image Enhancement[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(2): 460-473. 被引量:1
  • 9WHARTON E J, PANETTA K, AGAIAN S S. Logarithmic Edge Detection with Applications[C]//IEEE International Conference on Systems, Man and Cybernetics.Montreal, Que.: IEEE, 2007: 3346-3351. 被引量:1
  • 10龚昌来,罗聪,杨冬涛,黄杰贤.一种基于平稳小波域的红外图像增强方法[J].激光与红外,2013,43(6):703-707. 被引量:16

二级参考文献76

共引文献257

同被引文献125

引证文献17

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部