期刊文献+

基于非抽样Contourlet变换的图像模糊取证 被引量:16

Image Forensics for Blur Detection Based on Nonsubsampled Contourlet Transform
下载PDF
导出
摘要 数字图像被动盲取证技术是对图像的完整性和真实性进行鉴别.图像遭受篡改操作后,为了消除图像伪造在拼接边缘产生畸变,伪造者通常会采用后处理消除伪造痕迹,其中,模糊操作是最常用的手法之一.因此提出了一种针对人工模糊的取证方法.首先,利用非抽样Contourlet变换分析图像边缘点特征进行边缘点分类;然后通过统计正常边缘点与模糊边缘点之间的差异鉴别模糊边缘;最后引入局部清晰度来区分人工模糊与离焦模糊,从而最终标定人工篡改边缘痕迹.实验表明该方法能够有效地检测出图像人工模糊篡改操作,较为准确地定位图像篡改边界.伪造图像边缘模糊越严重方法的检测效果越好.与其他模糊检测方法相比所提方法具有像素级别定位能力. Digital image passive blind forensics aim to distinguish the integrity and authenticity of digital images. After the image is tampered, in order to eliminate the visual edge distortion caused by splicing during the process of forgery, some post-processing operations are usually utilized to eliminate the tampering traces. For example, manual blurring is one of the common approaches. Based on this condition, a method which can detect manual blurring from the tampered image is proposed. Firstly, the features of the image edges are analyzed by using nonsubsampled contourlet, by which the image edges can be classified. Then the authors can distinguish whether the edge is blurred by the differences between the normal edge and the blurred edge. Finally, local definition which is defined to indicate the differences between the manual blurring and out of focus, can be used to locate the manual blurred traces. Experimental results show that this method can detect possible manual blurring in the given tested images and locate the tampered boundary with a relative high accurate rate. The more serious the image blurred edge is, the better performance the method has. Compared with the other blurring detection approaches, the method presented has the capability of pixel-location.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第9期1549-1555,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60574082) 江苏省自然科学基金项目(BK2008403) 中国博士后基金项目(20070421017) 江苏省"青蓝工程"中青年学术带头人培养基金项目~~
关键词 图像取证 篡改 人工模糊 非抽样Contourlet 局部清晰度 image forensics tampering manual blurring nonsubsampled contourlet local definition
  • 相关文献

参考文献7

二级参考文献25

  • 1冼广铭,王知衍,黄鲲.紧支撑二维小波多尺度融合图像效果评价[J].计算机工程与设计,2006,27(15):2740-2743. 被引量:12
  • 2Lyu Siwei. Natural Image Statistics for Digital Image Forensics[ D]. USA : Department of Computer Science, Dartmouth College, 2005. 被引量:1
  • 3Hany Farid. Creating and Detecting Doctored and Virtual Images: Implications to the Child Pornography Prevention Act[R]. USA: Department of Computer Science, Dartmouth College, 2004. 被引量:1
  • 4Alin C. Popescu, Hany Farid. Statistical tools for digital forensics[ A]. 6th International Workshop on Information Hiding,LNCS vol. 3200 [ C ]. New York : Springer-Verlag, Berlin-Heidelberg ,2004.128 - 147. 被引量:1
  • 5Alin C Popescu, Hany Farid. Exposing Digital Forensics by Detecting Duplicated Image Regions [ R ]. USA: Department of Computer Science, Dartmouth College, 2004. 被引量:1
  • 6Tian-Tsong NG, Shih-Fu Chang. Blind Detection of Photomonrage Using Higher Order Statistics[ DB/OL]. http://www, ee.columbia, edu/dvmm/, Jan, 2004. 被引量:1
  • 7Tian-Tsong NG, Shih-Fu Chang. A model for image splicing[ A ]. IEEE Conference Proceedings on Image Processing[ C ].New York. IEEE Press, 2004.1169 - 1172. 被引量:1
  • 8Fridrich J, Soukal D, Lukas J. Detection of Copy-move Forgery in Digital Images [ DB/OL ]. http://www, ws. binghamton,edu/fridrich/publications, html, 2004. 被引量:1
  • 9刘文锋.基于图像连续性的数字图像取证技术研究[D].大连:大连理工大学,2005. 被引量:1
  • 10Brown T J. An adaptive strategy for wavelet based image enhancement[ A] .Proceedings of Irish Machine Vision and Image Processing Conference[ C ]. Belfast, Northern Ireland, 2000.67 -81. 被引量:1

共引文献97

同被引文献129

引证文献16

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部