期刊文献+

基于NSST域的引导滤波遥感图像增强方法 被引量:4

Remote sensing image enhancement based on NSST domain and guided filtering
下载PDF
导出
摘要 针对图像增强过程中出现的清晰度低、噪声放大、细节不明显和边缘梯度保持能力弱等问题,提出一种NSST和引导滤波相结合的图像增强算法。将原始图像和直方图均衡化后的图像分别进行NSST处理,得到各自的低频子带和高频子带;将直方图均衡化后的低频子带进行PM滤波增强;采用循环阈值法抑制原始图像的高频子带中的噪声,用引导滤波对高频子带进行增强,提高图像的清晰度和边缘梯度保持能力,对处理后的低频子带和高频子带进行NSST逆变换。实验结果表明,该算法增强了图像的细节信息,改善了图像的视觉效果。 Aiming at the problems of low resolution,amplifying noise,lack of the details and weak edge gradient retention in the process of the image enhancement,an image enhancement algorithm combining NSST and guided filtering was proposed.The image of the original image and the histogram equalization were divided into NSST decomposition,and the respective low-frequency sub-bands and the high frequency sub-bands were obtained.The low frequency subband of histogram equalization was enhanced by PM filtering.The NSST with cycle spinning approach was used to suppress the high frequency sub-bands noise of the original image,the high frequency sub-bands were enhanced using guide filter to improve the definition and edge gradient ability of the images.The reconstructed image was obtained through inverse NSST for the processed low-frequency and high frequency sub-bands.Experimental results show that the algorithm can enhance image details,the visual effect of the image is greatly improved.
作者 韩晶 贾振红 杨杰 Nikola Kasabov HAN Jing;JIA Zhen-hong;YANG Jie;Nikola Kasabov(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Institute of Image Processing and Pattern Recognition,Shanghai Jiao Tong University,Shanghai 200240,China;Knowledge Engineering and Discovery Research Institute,Auckland University of Technology,Auckland 1020,New Zealand)
出处 《计算机工程与设计》 北大核心 2018年第9期2832-2835,2906,共5页 Computer Engineering and Design
基金 教育部促进与美大地区科研合作与高层次人才培养基金项目(2014-2029 2016-2196)
关键词 遥感图像 图像增强 NSST变换 PM滤波 旋转阈值去噪 引导滤波 remote sensing image image enhancement NSST transformation PM filtering NSST with cycle spinning approach guided filtering
  • 相关文献

参考文献4

二级参考文献74

  • 1熊兴华,钱曾波,陈鹰,陈刚,张丽.基于遗传优化的分段线性影像增强[J].测绘学报,2004,33(4):341-346. 被引量:9
  • 2陈桂明,江良洲.一种基于小波理论的铁谱图像反锐化掩模增强法[J].润滑与密封,2006,31(3):59-61. 被引量:4
  • 3KONGWeiwei,LEI Yingjie,LEI Yang,et al.Image fusiontechnique based on NSCT and adaptive unit-fast-linking PC-NN[ J].IET Image Processing,2011,5(2):113-121. 被引量:1
  • 4DOM N,VETTERLI M.The finite ridgelet transform for im-age representation [ J].IEEE Transactions on Image Pro-cessing,2003,12(1):16-28. 被引量:1
  • 5CANDES E J,DONOHO D L.Curvelets:a surprisingly ef-fective non-adaptive representation for objects with edges[C]//[ S.l.]:Saint-Malo Proceedings,2002. 被引量:1
  • 6DO M N,VETTERLI M.The contourlet transform:an efficientdirectional multi-resolution image representation [ J].IEEETransactions on Image Processing,2002,11(1):16-28. 被引量:1
  • 7DO M N,VETTERLI M.Contourlets in:beyond wavelets[M].New York:Academic Press,2002;1-27. 被引量:1
  • 8CUNHAA L,ZHOU J P,DO M N.Nonsubsampled cont-ourlet transform:filter design and applications in denoising[C]//Proceedings of IEEE conference on Image Process-ing.Genova,Italy,2005:749-752. 被引量:1
  • 9ZHOU J P,CUNHA A L,DO M N.Nonsubsampled cont-ourlet transform:construction and application in enhance-ment[ C] //Proceedings of IEEE conference on Image Pro-cessing.Genova,Italy,2005:469-472. 被引量:1
  • 10CUNHA A L,ZHOU J P,DO M N.The nonsubsampledcontourlet transform:theory,design and applications[ J].IEEE Transactions on Image Processing,2006,15(10):3089-3101. 被引量:1

共引文献65

同被引文献25

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部