期刊文献+

基于聚类有效性函数的面状地理实体聚类 被引量:3

Clustering Method for Area Geographical Entities Based on Cluster Validity Function
下载PDF
导出
摘要 为解决聚类数未知条件下面状地理实体的聚类问题,文中提出了一种基于聚类有效性函数的聚类方法。给出了适合面状地理实体k-中心点聚类算法的聚类有效性函数;将该有效性函数改写为适应度函数,设计了基于遗传算法的面状地理实体聚类算法。该算法在计算聚类数的同时能得到划分聚类结果。实验结果从一定程度上反映了数据集的结构信息特征。 A cluster validity function-based method is proposed for solving the problem of clustering for area geographical entities when the number of cluster is unknown. A cluster validity function fitting to k-medoid clustering algorithm is derived and is taken as fitness function. A GAs-based clustering algorithm is put forth. The advantage of the algorithm is getting clusters of dataset as well as calculation the number of cluster. The results of test reflect the inner properties of dataset in some extent.
出处 《测绘科学技术学报》 北大核心 2006年第1期44-47,共4页 Journal of Geomatics Science and Technology
关键词 聚类有效性函数 遗传算法 聚类 cluster validity function genetic algorithms clustering
  • 相关文献

参考文献13

  • 1[1]Han J,Kamber M.Data mining:Concepts and techniques[M].San Francisco:Morgan Kaufmann Publishers,2001:223. 被引量:1
  • 2[2]Jain A K,Murty M N,Flynn P J.Data clustering:A review[J].ACM Computing Surveys,1999,31(3):264-323. 被引量:1
  • 3[3]Chiou Y C,Lan L W.Theory and methodology genetic clustering algorithms[J].European Journal of Operational Research,2001,135(2):413-427. 被引量:1
  • 4杨春成,张清浦,田向春,何列松,苏永宪.基于遗传算法的面状地理实体聚类[J].地理与地理信息科学,2004,20(3):12-16. 被引量:7
  • 5杨春成,张清浦,田向春.基于簇分解的面状地理实体聚类[J].测绘科学,2005,30(1):52-54. 被引量:1
  • 6[6]Halkidi M,Vazirgiannis M.Clustering validity assessment:Finding the optimal partitioning of a data set[A].Proc.of the 2001 IEEE Int.Conf.On Data Mining[C],2001:187-194. 被引量:1
  • 7[7]Rousseeuw P J.Silhouettes:a graphical aid to the interpretation and validation of cluster analysis[J].J.Comp App.Math,1987,20:53-65. 被引量:1
  • 8[8]Jain A K,Dubes R C.Algorithms for Clustering Data[M].Prentice Hall,1988:51-55. 被引量:1
  • 9[9]Hansen P,Delattre M.Complete-link cluster and analysis by graph coloring[J].Journal of the American Statistical Association,1978,73:397-403. 被引量:1
  • 10[10]Ray S,Turi R H.Determination of Number of Clusters in K-Means Clustering and Application in Colour Image Segmentation[A].Proc.of the 4th Int.Conf.On Advances in Pattern Recognition and Digital Techniques[C],1999:137-143. 被引量:1

二级参考文献23

  • 1齐华,刘文熙.建立结点上弧-弧拓扑关系的Qi算法[J].测绘学报,1996,25(3):233-235. 被引量:25
  • 2杨春成.基于分布式微机地图数据库的电子地图制作系统[J].测绘科技,1997(2):38-41. 被引量:1
  • 3Chiou Y-C, Lan L W. Theory and methodology genetic clustering algorithms [Jl. European Journal of Operation Research, 2001, (135): 413-427. 被引量:1
  • 4Boley D. Principal direction divisive partitioning [J].Data Mining and Knowledge Discovery, 1998, 2 (4):325-344. 被引量:1
  • 5Ding C and He X. Cluster merging and splitting in hierarchical clustering algorithms [EB/OL]. http: //citeseer. nj. nec. com. 被引量:1
  • 6JAIN A K,MURTY M N,FLYNN P J. Data clustering:a review[J].AGM Computing Surveys, 1999,31(3):264-323. 被引量:2
  • 7CHIOUYC, LANLW.Theory and methodology genetic clustering algorithms[J]. European Joumal of Operational Research,2001, 135(2):413-427. 被引量:2
  • 8RADCLIFFZE N J. Genetic set recombination[A]. WHITELEY L D. Foundations of Genetic Algorithms 2[C]. San Mateo: Morgan Kaufmann Publishers, 1993. 被引量:1
  • 9ESTERM,KRIEGELHP,SANDERJ,etal. A density- based algorithm for discovering clusters in large spatial databases[A].Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96)[C]. Menlo Park:AAAI Press, 1996. 226-331. 被引量:1
  • 10NG RT,HAN J .Efficient and effective clustering methods for sparial data mining [A]. Proc. 1994 Int. Conf. Very Large Data Bases (VLDB'94) [C]. San Francisoo: Morgan Kaufmann Publishers,1994.144-155. 被引量:2

共引文献17

同被引文献62

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部