期刊文献+

Optimal D-RIP Bounds in Compressed Sensing 被引量:3

Optimal D-RIP Bounds in Compressed Sensing
原文传递
导出
摘要 This paper establishes new bounds on the restricted isometry constants with coherent tight frames in compressed sensing. It is shown that if the sensing matrix A satisfies the D-RIP condition 5k 〈 1/3 or 52k 〈 x/2/2, then all signals f with D*f are k-sparse can be recovered exactly via the constrained l1 minimization based on y = A f, where D* is the conjugate transpose of a tight frame D. These bounds are sharp when D is an identity matrix, see Cai and Zhang's work. These bounds are greatly improved comparing to the condition 8k 〈 0.307 or 52k 〈 0.4931. Besides, if 3k 〈 1/3 or δ2k 〈 √2/2, the signals can also be stably reconstructed in the noisy cases. This paper establishes new bounds on the restricted isometry constants with coherent tight frames in compressed sensing. It is shown that if the sensing matrix A satisfies the D-RIP condition 5k 〈 1/3 or 52k 〈 x/2/2, then all signals f with D*f are k-sparse can be recovered exactly via the constrained l1 minimization based on y = A f, where D* is the conjugate transpose of a tight frame D. These bounds are sharp when D is an identity matrix, see Cai and Zhang's work. These bounds are greatly improved comparing to the condition 8k 〈 0.307 or 52k 〈 0.4931. Besides, if 3k 〈 1/3 or δ2k 〈 √2/2, the signals can also be stably reconstructed in the noisy cases.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第5期755-766,共12页 数学学报(英文版)
基金 Supported by NSFC(Grant No.11171299)
关键词 Compressed sensing D-restricted isometry property COHERENT tight frames Compressed sensing, D-restricted isometry property, coherent, tight frames
  • 相关文献

参考文献23

  • 1Aldroubi, A., Chen, X., Powell, A. M.: Perturbations of measurement matrices and dictionaries in compressed sensing. Appl. Comput. Harmon. Anal., 33, 282-291 (2012). 被引量:1
  • 2Blanchard, J. D., Cartis, C., Tanner J.: Compressed sensing: How sharp is the RIP? SIAM Rev., 53, 105-125 (2011). 被引量:1
  • 3Baraniuk, R., Davenport, M., DeVore, R., et al.: A simple proof of the restricted isometry property for random matrices. Constr. Approx., 28, 253-263 (2008). 被引量:1
  • 4Cai, T., Wang, L., Xu, G.: Shifting inequality and recovery of sparse signals. IEEE Trans. Signal Process., 58, 1300-1308 (2010). 被引量:1
  • 5Cai, T., Wang, L., Xu, G.: New bounds for restricted isometry constants. IEEE Trans. Inform. Theory, 56, 4388-4394 (2010). 被引量:1
  • 6Cai, T., Xu, G., Zhang, J.: On recovery of sparse signals via minimization. IEEE Trans. Infrom. Theory, 55, 3388-3397 (2009). 被引量:1
  • 7Cai, T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inform. Theory, 60, 122-132 (2014). 被引量:1
  • 8Cai, T., Zhang, A.: Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput. Harmon. Anal., 35, 74—93 (2012). 被引量:1
  • 9Candes, E. J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris, Serie I, 346, 589-592 (2008). 被引量:1
  • 10Candes, E. J., Eldar, Y. C., Needell, D.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal, 31, 59-73 (2011). 被引量:1

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部