期刊文献+

无约束的l_(2,1)-分析法重构冗余紧框架下分块稀疏信号的条件 被引量:1

The Condition for the Recovery of Block Sparse Signal Based on Redundant Tight Frame via the Unconstrained l_(2,1)-Analysis Method
原文传递
导出
摘要 文章主要利用分块稀疏信号的凸分解技术分析无约束的l_(2,1)-分析模型,建立无约束的l_(2,1)-分析法重构冗余紧框架下分块稀疏信号的条件,其条件基于紧框架下的限制等距性质.首先,利用分块稀疏信号的凸分解技术建立两个重要技术引理.其次,基于发展的两个技术引理建立无约束的l_(2,1)-分析法恢复冗余紧框架下分块稀疏信号新的恢复条件,其条件基于紧框架下的限制等距性质,改进了现存最好的恢复条件.最后,设计数值实验,说明无约束的l_(2,1)-分析法重构冗余紧框架下分块稀疏信号的性能. In this paper,we mainly apply the convex decomposition of block sparse signals to analyse the unconstrained l_(2,1)-analysis model and develop the condition for the recovery of block sparse signals based on redundant tight frames via the unconstrained l_(2,1)-analysis method,which is based on restricted isometry property under tight frame.We first develop two significant lemmas based on the convex decomposition theory.Second,we build the weak condition based on restricted isometry property under tight frame for the recovery of block sparse signals based on redundant tight frames via the unconstrained l_(2,1)-analysis method.Last,numerical experiments is established to verify the recovery performance of the unconstrained l_(2,1)-analysis method.
作者 刘洋铄 刘宏宇 葛焕敏 LIU Yangshuo;LIU Hongyu;GE Huanmin(School of Sports Engineering,Beijing Sport University,Beijing 100084)
出处 《系统科学与数学》 CSCD 北大核心 2022年第3期509-527,共19页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(11901037) 北京体育大学大学生创新创业训练计划项目(2018)资助课题。
关键词 压缩感知 分块稀疏信号 无约束的l_(2 1)-分析法 紧框架下的块RIP条件 Compressed sensing block sparse signal the unconstrained l_(2,1)-analysis method block RIP condition based on tight frame
  • 相关文献

参考文献9

二级参考文献71

  • 1Candes E, Romberg J, Tao T. Stable signal recovery from incomplete and inaccurate measure-ments. Commun. Pure Appl. Math” 2006, 59(8): 1207-1223. 被引量:1
  • 2Donoho D. Compressed sensing. IEEE Trans, on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3Haupt J, Nowak R. Signal reconstruction from noisy random projections. IEEE Trans, on Infor-mation Theory, 2006, 52(9): 4036-4048. 被引量:1
  • 4Baron D, Duarte M F, Sarvotham S, Wakin M B, Baraniuk R G. An information-theoreticapproach to distributed compressed sensing. Proceedings of the 43rd Allerton Conference onCommunication, Control, and Computing, 2005. 被引量:1
  • 5Duarte M F, Sarvotham S, Baron D, Wakin M B, Baraniuk R G. Distributed compressed sensingof jointly sparse signals. Conference Record of Thirty-Ninth Asilomar Conference on Signals,Systems and Computers, 2005, 24: 1537-1541. 被引量:1
  • 6Duarte M F, Sarvotham S, Wakin M B, Baron D, Baraniuk R G. Joint sparsity models fordistributed compressed sensing. Online Proceedings of the Workshop on Signal Processing withAdaptative Sparse Structured Representations (SPARS), 2005. 被引量:1
  • 7Wang W, Garofalakis M, Ramchandran K. Distributed sparse random projections for refinableapproximation. Proceedings of the Sixth International Symposium on Information Processing inSensor Networks, New York: Association for Computing Machinery, 2007, 331-339. 被引量:1
  • 8Valsesia D, Coluccia G, Magli E. Joint recovery algorithms using difference of innovations for dis-tributed compressed sensing. The 47th Asilomar Conference on Signals, Systems, and Computers,2013,414—417. 被引量:1
  • 9Lu H, Long X, Lv J. A fast algorithm for recovery of jointly sparse vectors based on the alternatingdirection methods. Proceedings of the 14th International Conference on Articial Intelligence andStatistics (AISTATS), 2011, 15: 461-469. 被引量:1
  • 10Candes E. The restrict isometry property and its implications for compressed sensing. ComptesRendus Math, 2008, 346(3): 589-592. 被引量:1

共引文献15

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部