期刊文献+

Compressed data separation via dual frames based split-analysis with Weibull matrices 被引量:2

Compressed data separation via dual frames based split-analysis with Weibull matrices
下载PDF
导出
摘要 In this paper, we consider data separation problem, where the original signal is composed of two distinct subcomponents, via dual frames based Split-analysis approach. We show that the two distinct subcomponents, which are sparse in two diff erent general frames respectively, can be exactly recovered with high probability, when the measurement matrix is a Weibull random matrix (not Gaussian) and the two frames satisfy a mutual coherence property. Our result may be significant for analysing Split-analysis model for data separation. In this paper, we consider data separation problem, where the original signal is composed of two distinct subcomponents, via dual frames based Split-analysis approach. We show that the two distinct subcomponents, which are sparse in two diff erent general frames respectively, can be exactly recovered with high probability, when the measurement matrix is a Weibull random matrix (not Gaussian) and the two frames satisfy a mutual coherence property. Our result may be significant for analysing Split-analysis model for data separation.
作者 CAI Yun LI Song
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期427-437,共11页 高校应用数学学报(英文版)(B辑)
基金 Supported by the National Natural Science Foundation of China(11171299 and 91130009)
关键词 Compressed sensing data separation dual frames split-analysis Weibull random matrices Compressed sensing data separation dual frames split-analysis Weibull random matrices
  • 相关文献

参考文献27

  • 1R. Baraniuk, M. Davenport, R. Decore and M. Wakin. A simple proof of the restricted isometry property for random matrices, Constr Approx, 2008, 28: 253-263. 被引量:1
  • 2J. Cai, S. Osher and Z. Shen. Split Bregman methods and frame based image restoration, Multiscale Model Simul, 2009, 8: 337-369. 被引量:1
  • 3T. Cai, L. Wang and G. Xu. New bounds for restricted isometry constants, IEEE Trans Inform Theory, 2010, 56: 4388-4394. 被引量:1
  • 4T. Cai and A. Zhang. Sharp RIP bound for sparse signal and low-rank matrix recovery, Appl Comput Harmon Anal, 2012, 31: 59-73. 被引量:1
  • 5T. Cai and A. Zhang. Sparse representation of a polytope and recovery of sparse signals and low- rank matrices, manuscript, available at http://arxiv.org/abs/1306.1154.pdf. 被引量:1
  • 6T. Cai, G. Xu and J. Zhang. On recovery of sparse signals via 11 minimization, IEEE Trans Inform Theory, 2009, 55: 3388-3397. 被引量:1
  • 7E. J. Cand~s. The restricted isometry property and its implications for compressed sensing, C R Acad Sci Paris S@r I Math, 2008, 346: 589-592. 被引量:1
  • 8E. J. Cand~s, J. Romberg and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans Inform Theory, 2006, 52: 489-509. 被引量:1
  • 9E. J. Candhs, J. Romberg and T. Tao. Stable signal recovery from incomplete and inaccurate measurements, Comm Pure Appl Math, 2006, 59: 1207-1223. 被引量:1
  • 10E. J. Cand~s, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant dictionaries, Appl Comput Harmon Anal, 2011, 31: 59-73. 被引量:1

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部