期刊文献+

站立平衡调节的肌力优化求解与分析 被引量:5

Optimal Solution and Analysis of Muscular Force during Standing Balance
原文传递
导出
摘要 针对人体站立平衡姿态保持过程中,下肢主要肌肉的肌力变化分布的最优求解问题。本研究将人体下肢运动肌肉骨骼简化为具有3关节和9块肌肉的平面物理模型,并在此基础上建立了用于冗余肌力优化求解的数学模型。分别利用粒子群优化(POS)单目标和多目标算法进行最优化求解。数值计算的结果表明多目标优化可以更合理地得到9组肌力的分布及变化规律。最后,通过对仿真结果的分析,定性地分析了被动运动下人体恢复站立平衡过程中各肌肉群的运动协调规律。 The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human.The movement musculoskeletal system of lower extremity was simplified to a physical model with 3joints and 9muscles.Then on the basis of this model,an optimum mathematical model was built up to solve the problem of redundant muscle forces.Particle swarm optimization(PSO)algorithm is used to calculate the single objective and multi-objective problem respectively.The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces.Finally,the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第1期59-66,共8页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61074175)
关键词 人体站立平衡 冗余肌力 多目标优化 粒子群优化 human standing balance redundant muscular forces multi-objective optimization particle swarm optimization
  • 相关文献

参考文献18

  • 1唐刚..人体典型运动生物力学仿真分析[D].上海交通大学,2011:
  • 2NEPTUNE R R.Optimization algorithm performance in determining optimal controls in human movement analyses[J].J Biomech Eng,1999,121(2):249-252. 被引量:1
  • 3RAIKOVA R T,PRILUTSKY B I.Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses[J].J Biomech,2001,34(10):1243-1255. 被引量:1
  • 4SETH A.PANDY MG.A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement[J].J Biomech,2007,40(2):356-366. 被引量:1
  • 5SANTANA-QUINTERO L V,HKRNANDEZ-DIAZ A G,MOLINA J,et al.DEMORS:A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems[J].Computers Operations Research,2010,37(3):470-480. 被引量:1
  • 6BENSGHAIER A,ROMDHANE L,BENOUEZDOU F.Multi-objective optimization to predict muscle tensions in a pinch function using genetic algorithm[J].Comptes Rendus Mecanique,2012,340(3):139-155. 被引量:1
  • 7TAN D,LUO W,LTU Q.Multi-objective particle swarm optimization algorithm for engineering constrained optimization problems[C]// IEEE International Conference on Granular Computing,San Jose:2009:523-528. 被引量:1
  • 8CARVALHO A B,POZO A.Measuring the convergence and diversity of CDAS multi-objective particle swarm optimization algorithms:a study of many-objective problems[J],Neuro-computing,2012,75(1):43-51. 被引量:1
  • 9YANG K.An improved particle swarm optimization for multi-objective discrete optimization[C]// IEEE International Conference on Innovation Management and Industrial Engineerings Sanya:2012:219-222. 被引量:1
  • 10肖金壮,熊鹏,王洪瑞,杨信才,刘琨.被动运动下人体平衡调节过程线性特性分析[J].生物医学工程学杂志,2012,29(3):420-423. 被引量:3

二级参考文献32

共引文献77

同被引文献28

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部