期刊文献+

求解多目标优化问题的分布估计算法 被引量:1

An Estimation of Distribution Algorithm for Multi-Objective Problem
下载PDF
导出
摘要 通过对多目标优化方法研究现状的分析,针对多目标优化问题的特点提出一种基于联合正态分布的求解多目标优化问题的分布估计算法。该算法将不同目标函数的自变量作为不同的随机变量,用联合正态分布对扩充的解空间进行估计,并用投影的方式将采样点映射到解空间中。仿真结果表明了该算法的有效性。 By analyzing the research status of Multi-Objective optimization, an Estimation of Distribution Algorithm for Multi-Objective Problem based on joint normal distribution is proposed. In this algorithm, variables of different objective functions are regarded as different random variables, and the extended solution space is estimated based on joint normal distribution, and the samples are mapped to the solution space by projection. Simulations prove the effectiveness of the algorithm.
出处 《太原科技大学学报》 2010年第1期55-58,共4页 Journal of Taiyuan University of Science and Technology
基金 太原科技大学青年基金(2007116)
关键词 分布估计算法 多目标优化 正态分布 estimation of distribution algorithm, multi-objective optimization, normal distribution
  • 相关文献

参考文献22

  • 1钱颂迪.运筹学[M]. 北京:清华大学出版社,1990. 被引量:116
  • 2SCHAFFER J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms [ C ]//Proc. of the 1 st International Conference on Genetic Algorithms. Lawrence Erlbaum,1985:93-100. 被引量:1
  • 3FONSECA C M, FLEMING P J. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generation [ C]//Forrest S. ed. Proc. of the 5th International Conference of Genetic Algorithms. San Mateo, California, 1993:416-423. 被引量:1
  • 4HORN J, NAFPKIOTIS N. Multiobjective Optimization using the Niched Pareto Genetic Algorithm, University of Illinois at Urbana-Champaign [ R ]. USA : Urbana, Illinois, Technical Report, IlliGAL Report 93005,1993. 被引量:1
  • 5SRINIVAS N, DEB K. Multiobjective Optimization Using Nondominated Sorting in Gentic Algorithms [ J]. Evolutionary Computation, 1994,2 ( 3 ) :221-248. 被引量:1
  • 6DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Muhiobjective Genetic Algorithm : NSGA-II [ J ]. IEEE Transactions On Evolutionary Computation,2002,6 (2) : 182-197. 被引量:1
  • 7ZITZLER E,THIELE L. Multiobjective Optimization using Evolutionary Algorithms-A Comparative Case Study[ C]//EIBEN A E, BACK T,SCHOENAUER M,SCHWEFEL H Peds. Parallel Problem Solving from Nature. Berlin,Germany:Springer,1998:292-301. 被引量:1
  • 8ZITZLER E, LAUMANNS M, THIELE L. SPEA2 : Improving the Strength Pareto Evolutionary Algorithm[ R ]. ETH Zentnlm, Zurich, Switzerland : TIK-Report 103,2001. 被引量:1
  • 9HU X H, Eberhart R. mttltiobjective optimization using dynamic neighborhood particle swarm optimization[ C ]//IEEE CEC, 2002 : 1677-1681. 被引量:1
  • 10PARSOPOULOS K E, VRAHSTIS M N. Particle Swarm Optimization Method in Multiobjective Problems [ C ]//SAC 2002, Madrid,Spain,2002 ACM. 被引量:1

二级参考文献165

共引文献704

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部