期刊文献+

可调形三次三角Cardinal插值样条曲线 被引量:9

CUBIC TRIGONOMETRIC CARDINAL INTERPOLATION SPLINE WITH ADJUSTABLE SHAPE
原文传递
导出
摘要 在三次Cardinal插值样条曲线的基础上,引入了三角函数多项式,得到一组带调形参数的三次三角Cardinal样条基函数,以此构造一种可调形的三次三角Cardinal插值样条曲线.该插值样条可以精确表示直线、圆弧、椭圆以及自由曲线,改变调形参数可以调控插值曲线的形状.该插值样条避免了使用有理形式,其表达式较为简洁,计算量也相对较少,从而为多种线段的构造与处理提供了一种通用与简便的方法. By introducing trigonometric polynomial functions on the basis of cubic Cardinal inter- polation spline curve, a set of primary functions with shape adjustable parameter is obtained, and a new curve called cubic trigonometric Cardinal interpolation spline is constructed by it. The spline can be used to accurately represent line, arc, ellipse and free curve, and the shape of interpolation spline can be controlled by changing the adjustable parameter. The interpolation spline has a more concise expression by avoid using rational form, and it needs relatively less calculation, which provides a common and simple method for constructing and processing of curves.
出处 《计算数学》 CSCD 北大核心 2015年第1期34-41,共8页 Mathematica Numerica Sinica
关键词 插值样条曲线 三角多项式基函数 三次三角Cardinal插值样条 调形参数 Interpolation spline curve Trigonometric polynomial basis functions Cubic trigonometric Cardinal interpolation spline Adjustable shape parameter
  • 相关文献

参考文献8

二级参考文献32

共引文献32

同被引文献34

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部