期刊文献+

基于加速度传感器的放置方式和位置无关运动识别 被引量:7

Acceleration-based Activity Recognition Independent of Device Orientation and Placement
下载PDF
导出
摘要 传统基于加速度传感器的运动识别方法通常假设传感设备是固定放置的,当传感设备的放置方式或位置偏离预定设置时识别性能会受到极大影响。然而,在普适计算环境下使用最为广泛的传感设备——智能手机,通常无法预先固定其放置方式和位置。为解决此问题,提出了一种基于加速度传感器、与放置方式和位置无关的运动识别方法。该方法首先基于一种降维算法将原始三维加速度信号处理成与放置方式无关的一维信号,然后借鉴生物信息学中的"模体"(Motif)概念抽取一维信号中与放置位置无关的模式特征,最后基于模式特征构建向量空间模型(VSM)对运动进行识别。实验结果表明,该方法在不固定传感设备放置方式和位置条件下的运动识别率达到81.41%。 Traditional activity recognition methods based on acceleration sensors generally have the assumption that the orientation and placement of sensing devices are fixed. But the recognition performance will be greatly affected when this assumption fails. However, mobile phones, the most widely used sensing devices in pervasive computing environments, are usually placed at unfixed orientation and placement. In this paper,an activity recognition method based on independent acceleration sensor orientation and placement was proposed to resolve this problem. First, the original 3D acceleration signals are processed into one-dimensional signals. Then, the concept ‘Motif’ from bioinformatics is borrowed to extract position-independent patterns from one-dimensional signals. Finally, Vector Space Model (VSM) based on extracted patterns is built to conduct activity recognition. Experimental results show that recognition rate of the method reaches to 81.41% under the condition of unfixed orientation and placement of sensing devices.
出处 《计算机科学》 CSCD 北大核心 2014年第10期76-79,94,共5页 Computer Science
基金 国家"核高基"重大科技专项课题(2010ZX01042-002-003) 中国自然科学基金(61202282 60703040 61332017) 浙江省重大科技专项(2011C13042) 浙江省自然科学基金(LY12F02046)资助
关键词 运动识别 传感器位置 加速度传感器 模体发现 普适计算 Activity recognition, Sensor placement, Accelerometer, Motif discovery, Pervasive computing
  • 相关文献

参考文献13

  • 1Kang H,Woo Lee C,Jung K.Recognition-based gesture spotting in video games[J].Pattern Recognition Letters,2004,25(15):1701-1714. 被引量:1
  • 2Tentori M,Favela J.Activity-aware computing for healthcare[J].Pervasive Computing,IEEE,2008,7(2):51-57. 被引量:1
  • 3Kwapisz J R,Weiss G M,Moore S A.Activity recognition using cell phone accelerometers[J].ACM SIGKDD Explorations Newsletter,2011,12(2):74-82. 被引量:1
  • 4Bao L,Intille S S.Activity recognition from user-annotated acceleration data[M]∥Pervasive Computing.Springer Berlin Heidelberg,2004:1-17. 被引量:1
  • 5Ravi N,Dandekar N,Mysore P,et al.Activity recognition from accelerometer data[C]∥AAAI.2005:1541-1546. 被引量:1
  • 6Olguln D O,Pentland A S.Human activity recognition:Accuracy across common locations for wearable sensors,2006[C]∥Proceedings of International Symposium on Wearable Computers.2006:11-13. 被引量:1
  • 7Kunze K,Lukowicz P.Dealing with sensor displacement in motion-based onbody activity recognition systems[C]∥Proceedings of the 10th international conference on ubiquitous computing.ACM,2008:20-29. 被引量:1
  • 8Forster K,Roggen D,Troster G.Unsupervised classifier self-calibration through repeated context occurences:is there robustness against sensor displacement to gain?[C]∥International Symposium on Wearable Computers,2009(ISWC’09).IEEE,2009:77-84. 被引量:1
  • 9Lester J,Choudhury T,Borriello G.A practical approach to recognizing physical activities[M]∥Pervasive Computing.Springer Berlin Heidelberg,2006:1-16. 被引量:1
  • 10Chavarriaga R,Bayati H,Millán J D.Unsupervised adaptationfor acceleration-based activity recognition:robustness to sensor displacement and rotation[J].Personal and Ubiquitous Computing,2013,17(3):479-490. 被引量:1

同被引文献67

  • 1丁力,宋志平,徐萌萌,陶灿辉.基于STM32的嵌入式测控系统设计[J].中南大学学报(自然科学版),2013,44(S1):260-265. 被引量:127
  • 2AMFT O, STAGER M, LUKOWICZ P, et al. Analy- sis of chewing sounds for dietary monitoring [C]// Pro- ceedings of International Conference on Ubiquitous Compu- ting. Tokyo : Springer, 2005:56 - 72. 被引量:1
  • 3ALBINALI F, GOODWIN M S, INTILLE S S. Recog- nizing stereotypical motor movements in the laboratory and classroom: a case study with children on the autism spectrum [C] // Proceedings of International Conference on Ubiquitous Computing. Orlando: ACM, 2009 : 71 - 80. 被引量:1
  • 4LADHA C, HAMMERLA N Y, OLIVIER P, et al. ClimbAX: skill assessment for climbing enthusiasts [C] // Proceedings of International Joint Conference on Per- vasive and Ubiquitous Computing. Zurich: ACM, 2013: 235 - 244. 被引量:1
  • 5ATALLAH L, YANG G Z. The use of pervasive sens- ing for behaviour profiling: a survey [J]. Pervasive and Mobile Computing, 2009, 5(5): 447-464. 被引量:1
  • 6DEVAUL R W, DUNN S. Real-time motion classifica- tion for wearable computing applications [R]. Cam- bridge: MIT Media Laboratory, 2001. 被引量:1
  • 7LEE S W, MASE K. Activity and location recognition using wearable sensors [J]. Pervasive Computing, 2002, 1(3) : 24- 32. 被引量:1
  • 8BAO L, INTILLE S S. Activity recognition from user- annotated acceleration data [C] /// Proceedings of Inter- national Conference on Pervasive Computing. Vienna: Springer, 2004: 1- 17. 被引量:1
  • 9KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers [J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2) : 74 - 82. 被引量:1
  • 10RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data [C] /// Proceedings of Conference on Innovative Applications of Artificial In- telligence. Pittsburgh: AAAI, 2005: 1541- 1546. 被引量:1

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部