期刊文献+

运动识别中基于主题的特征构建方法

Topic based feature construction for activity recognition
下载PDF
导出
摘要 针对传统基于特征提取的运动识别方法很大程度上依赖研究者的领域知识和训练样本的规模问题,提出一种基于主题的特征构建方法,使用基于符号化聚合近似(SAX)的主题模型对运动模式进行建模.使用降维的方法对加速度原始信号进行预处理,结合时序数据符号化聚合近似化的方法,将SAX化后的时序数据集作为主题分析的文档集.通过主题模型进行模式挖掘,实现文档数据的降维效果,构造隐主题相关的向量,并通过建立空间向量模型(VSM)进行运动识别.实验结果表明:基于符号化聚合近似的主题分析方法可以很好地应用于运动识别,并且与传统基于特征提取的方法和基于模体发现的方法相比,活动识别率明显提升. A topic based feature construction method was proposed to address the problem that traditional activity recognition methods based on feature extraction heavily depend on the domain knowledge of researchers and the quantity of the training dataset.Based on Symbolic Aggregate approXimation(SAX),the proposed method employed a topic model to discover activity patterns.After preprocessed by dimensionality reduction techniques and symbolic aggregate approximation,the acceleration data were used as document set for the topic model.Pattern mining was completed through topical model to reduce the dimensions of the document data and construct the latent topic related vectors,then vector space model(VSM)was utilized to classify different activities.Results show that SAX based topic model can be well applied on activity recognition,and the proposed method is more effective to improve the recognition accuracy than feature extraction based method and motif discovery based method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1149-1154,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60703040 61332017) 浙江省科技计划资助项目(2011C13042 2015C33002)
关键词 运动识别 传感器 符号化聚合近似 模体发现 隐含狄利克雷分配 activity recognition sensor Symbolic Aggregate approXimation(SAX) motif discovery latent Dirichlet allocation
  • 相关文献

参考文献20

  • 1BAO L, INTILLE S. Activity recognition from user-an- notated acceleration data [C] // Proceedings of Interna- tional Conference on Pervasive Computing. Vienna: Springer Berlin Heidelberg, 2004 : 1 - 17. 被引量:1
  • 2LARA O, LABRADOR M. A survey on human activity recognition using wearable sensors[J]. IEEE Communica- tions Surveys and Tutorials, 2013, 15(3): 1192 - 1209. 被引量:1
  • 3SUN X, LU Z, HU W, et al. SymDetector: detecting sound-related respiratory symptoms using smartphones [C] ff Proceedings of UbiComp. Osaka: ACM, 2015: 97- 108. 被引量:1
  • 4GREEF L, GOEL M, SEO Met al. Bilieam: using mo- bile phones to monitor newborn jaundice [C] // Pro- eeedings of UbiComp. Seattle: ACM, 2014:331-342. 被引量:1
  • 5WANG R, HARARI G, HAO P, et al. SmartGPA: how smartphones can assess and predict academic per- formance of college students [C] // Proceedings of Ubi- Comp. Osaka: ACM, 2015: 295-306. 被引量:1
  • 6YE J, STEVENSON G, DOBSON S. KCAR: a knowl-edge-driven approach for concurrent activity recognition [J]. Pervasive and Mobile Computing, 2015, 19:47 -70. 被引量:1
  • 7KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers [J]. ACM SigKDD Explorations Newsletter, 2011, 12(2) : 74 - 82. 被引量:1
  • 8RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data [C] // Proceedings of AAAL Pittsburgh: AAAI, 2005: 1541-1546. 被引量:1
  • 9GUO H, CHEN L, SHEN Y, et al. Activity recogni- tion exploiting classifier level fusion of acceleration and physiological signals [C] // Proceedings of UbiComp Ad- junct. Seattle: ACM, 2014:63-66. 被引量:1
  • 10PARKKA, J, ERMES M, KORPIPAA P, et al. Ac- tivity classification using realistic data from wearable sensors [J]. IEEE Transactions on Information Tech- nology in Biomedicine, 2006, 10(1) : 119 - 128. 被引量:1

二级参考文献40

  • 1焦蓬蓬,沈廷根,宋雪桦,吴斌.一种典型的语音端点检测方法的研究[J].微计算机信息,2008(4):217-218. 被引量:3
  • 2Chen Yen-Ping,Yang Jhun-Ying,Liou Shun-Nan,et al.Online Classifier Construction Algorithm for Human Activity Detection U-sing a Tri-Axial Accelerometer[J].Applied Mathematics and Computation,2008,205(2):849 -860. 被引量:1
  • 3Brand M,Oliver N,Pentland A.Coupled Hidden Markov Models for Complex Action Recognition[C] //CVPR' 97:Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition(CVPR'97),page 994,1997. 被引量:1
  • 4Ermes M,Parkka J,Mantyjarvi J,et al.Detection of Daily Activities and Sports with Wearable Sensors in Controlled and Uncontrolled Conditions[J].Information Technology in Biomedicine,2008,12(1):20-26 Jan. 被引量:1
  • 5Ernst A Heinz,Kai S Kunze,Matthias Gruber,David Bannach,Paul Lukowicz.Using Wearable Sensors for Real-Time Recognition Tasks in Games of Martial Arts-An Initial Experiment[C] //Computational Intelligence and Games,IEEE 2006:98 -102. 被引量:1
  • 6http://www.lelejian.com/. 被引量:1
  • 7Parameswariah C,Cox M.Frequency Characteristics of Wavelets[J].IEEE Transactions on Power Delivery,2002,17(3):800-804. 被引量:1
  • 8Yang B S,Han T,An J L.ARTKOHO-NEN Neural Network fen-Fault Diagnosis of Rotating Machinery[J].Mechanical Systems and Signal Processing,2004,18(3):645 -657. 被引量:1
  • 9Ahmed Al-Ani.Feature Subset Selection Using ant Colony Optimization[J].International Journal of Compu -Tational Intelligence,IEEE 2005 VOL(2):53 -58. 被引量:1
  • 10Rand N.Khushaba,Akram AlSukker,Ahmed Al-Ani,Adel Al-Ju-maily.Intelligent Artificial Ants Based Feature Extraction from Wavelet Packet Coefficients for Biomedical Signal classification[M].Communications,Control and Signal Processing,2008:1366-1371. 被引量:1

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部