期刊文献+

基于运动传感器的手势识别 被引量:19

Motion Sensor Based Gesture Recognition
下载PDF
导出
摘要 为了使手势交互较少受到视角和光线的限制,提出利用可穿戴传感器作为输入设备和机器学习算法相结合进行手势识别的方法。通过采集加速度仪和地磁仪的数据,然后进行预处理、特征提取和特征选择,最终由隐马尔科夫模型进行手势分类和识别。为验证方法的有效性,设计实现了一个原型系统进行识别和对比实验。实验结果表明,该方法可以实时有效地对手势特别是复杂的手势进行识别。 Motion sensing techniques are less limited in space and lighting from the point of view of human computer interaction.On-body wearable sensors are used to study on how to effectively build gesture recognition system with machine learning methods.Acceleration and magnetic data collected by accelerometer and magnetometer are then used by the hidden Markov model.Data processing steps contain preprocessing,feature selection and extraction.A prototype system is developed to verify the effectiveness of the approach.The results show that the approach can effectively recognize some gestures,especially complicated ones in real time.
出处 《传感技术学报》 CAS CSCD 北大核心 2011年第12期1723-1727,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61070043) 浙江省自然科学基金项目(Y1100611)
关键词 运动传感器 人机交互 手势识别 隐马尔科夫模型 motion sensors human computer interaction gesture recognition Hidden Markov Model(HMM)
  • 相关文献

参考文献14

  • 1Zhou H,Hu H. Human Motion Tracking for Rehabilitation--A Survey [J]. Biomed Signal Processing and Control,2008,1 (3) :1-18. 被引量:1
  • 2Cao X, Balakrishnan R. VisionWand: Interaction Techniques for Large Displays Using a Passive wand Tracked in 3D [ C ]// Proceedings of the 16th Annual ACM Symposium on User InterfaceSoftware and Technology, Vancouver,2003 : 173-182. 被引量:1
  • 3Malik S, Ranjan A, Balakrishnan R. Interacting with Large Displays from a Distance with Vision-Tracked Multi-Finger Gestural Input [ C]//Proeeedings of the 18th Annual ACM Symposium on User Interface Software and Technology Seattle,2005:43-52. 被引量:1
  • 4Mannini A, Sabatini M. Machine Learning Methods for Classifying Human Physical Activity from On-Body Aeeelerometcrs [ J ]. Sensors. 2010 : 1154 - 1175. 被引量:1
  • 5梁秀波,张顺,李启雷,张翔,耿卫东.运动传感驱动的3D直观手势交互[J].计算机辅助设计与图形学学报,2010,22(3):521-526. 被引量:18
  • 6王昌喜,杨先军,徐强,马祖长,孙怡宁.基于三维加速度传感器的上肢动作识别系统[J].传感技术学报,2010,23(6):816-819. 被引量:27
  • 7李国峰,王锦,张勇,邵巍,董海坤,梁科.基于MEMS加速度传感器的智能输入系统[J].传感技术学报,2009,22(5):643-646. 被引量:17
  • 8Schlomer T,Poppinga B, Henze N, et al. Gesture Recognition with a Wii Controller [ C ]//Proceedings of the 2nd InternationalConference on Tangible and Embedded Interaction. New York: ACM Press,2008 : 11 - 14. 被引量:1
  • 9Vlasic D, Adelsberger R, Vannucci G, et al. Practical Motion Capture in Everyday Surroundings [ J ]. ACM Transactions on Graphics,2007,26 (3) :1-9. 被引量:1
  • 10Wii. http ://www. wii. com[ EB/OL]. 被引量:1

二级参考文献33

  • 1焦蓬蓬,沈廷根,宋雪桦,吴斌.一种典型的语音端点检测方法的研究[J].微计算机信息,2008(4):217-218. 被引量:3
  • 2Ying Wu, Thomas S. Huang. Vision-Based Gesture Recognition: A Review [M], Gesture-Based Communication in Human-Computer Interaction, 1999. 被引量:1
  • 3Perrin S, Cassinelli A, Ishikawa M. Gesture Recognition U- sing Laser-Based Tracking System [C]// IEEE Int. Conf. Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, 2004:541-546. 被引量:1
  • 4Sturman D J, Zeltzer D. A Survey of Glove-Based Input [C]// IEEE Computer Graphics & Applications, 1994, 14 (1) : 30- 39. 被引量:1
  • 5Hossain M, Jenkin M. Recognizing Hand-Raising Gestures Using HMM [C]// Computer and Robot Vision, 2005: 405- 412. 被引量:1
  • 6Wang Xiying, Dai Guozhong. A Novel Method to Recognize Complex Dynamic Gesture by Combining HMM and FNN Models[C], Computational Intelligence in Image and Signal Processing, 2007: 13-18. 被引量:1
  • 7Parthasarathy G, Chatterji B N. A Class of New KNN Methods for Low Sample Problems[J], IEEE Trans. Sys. , Man and Cybern. 1990, 20(3) :715-718. 被引量:1
  • 8von Hardenberg C, Berard F. Bare hand human-computer interaction [C] //Proceedings of ACM Workshop on Perceptive User Interface, Orlando, 2001:1-8. 被引量:1
  • 9Malik S, Ranian A, Balakrishnan R. Interacting with large displays from a distance with vision-tracked multi-finger gestural input [C] //Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, Seattle, 2005:43-52. 被引量:1
  • 10Cao X, Balakrishnan R. VisionWand: interaction techniques for large displays using a passive wand tracked in 3D [C] // Proceedings of the 16th Annual ACM Symposium on User Interface Software and Technology, Vancouver, 2003 : 173 - 182. 被引量:1

共引文献57

同被引文献221

引证文献19

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部