期刊文献+

融合深度信息和稀疏自编码的手势识别算法 被引量:1

The Gestures Recognition Algorithm Fusing Depth Information and Sparse AutoEncoder
下载PDF
导出
摘要 针对目前深度手势识别算法无法有效去除手腕区域干扰且识别率较低的问题,提出了一种融合深度信息和稀疏自编码的手势识别算法。改进算法利用深度信息和肤色信息相结合的方法对样本图像进行粗分割,对分割后的图像采用手势端点检测和可变阈值算法进行精确分割,去除人体手腕区域的干扰,得到精确的手势分割区域。然后将分割后的样本图像输入稀疏自编码神经网络中进行无监督的训练与特征提取,并将提取的特征输入到softmax分类器中进行识别,得到手势的识别结果。仿真结果表明,改进算法能够有效去除手腕区域部分,且具有更高的识别率。 Aiming at the problems that the current depth gestures recognition algorithms cannot effectively remove the interference of wrist area and low recognition rate,the paper proposes a gestures recognition algorithm which fuses depth information and sparse autoencoder. The improved algorithm uses the combination of depth information and color information to coarsely split the sample image. Then it uses gesture endpoint detection and variable threshold algorithm to accurately split the image after coarsely segmentation. By this way,it can remove the interference of wrist area and get the precise gesture segmentation area. Then the segmented sample is input into the sparse autoencoder neural network for unsupervised training and feature extraction. The extracted features are input into the softmax classifier for identification,and the recognition result of the gesture is obtained. The simulation result shows that the improved algorithm can effectively remove the region of the wrist and has higher recognition rate.
作者 沈先耿 SHEN Xian-geng(Chinese People's Armed Police Force Academy Dept.of Information Engineering,Chengdu Sichuan 610213,China)
出处 《计算机仿真》 北大核心 2019年第1期397-402,共6页 Computer Simulation
基金 国家自然科学基金资助项目(61403164)
关键词 深度信息 手势分割 手势识别 稀疏自编码 Depth information Gesture segmentation Gesture recognition Sparse autoencoder
  • 相关文献

参考文献8

二级参考文献76

  • 1张生军,何小海,李刚,周宜波,侯胜伟.基于视频的手势识别中左右手判别研究[J].四川大学学报(工程科学版),2011,43(S1):155-159. 被引量:3
  • 2胡友树.手势识别技术综述[J].中国科技信息,2005(2):42-42. 被引量:27
  • 3Kelly D,McDonald J,Markham C.A Person Independent System for Recognition of Hand Postures Used in Sign Language[J].Pattern Recognition Letters,2010,31(11):1359-1368. 被引量:1
  • 4Wang Chieh-Chih,Wang Ko-Chih.Hand Posture Recognition Using Adaboost with Sift for Human Robot Interaction[C]//Proc.of International Conference on Advanced Robotics.Jeju Island,Korea:[s.n.],2007. 被引量:1
  • 5Flasinski M,Myslinski S.On the Use of Graph Parsing for Recognition of Isolated Hand Postures of Polish Sign Language[J].Pattern Recognition,2010,43(6):2249-2264. 被引量:1
  • 6Witten I H,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].Burlington,USA:Morgan Kaufmann Publishers,2005. 被引量:1
  • 7Zhu Yuanxin,Proceedings of SPIE,Vol 35 45,1998年,228页 被引量:1
  • 8Pavlovic V,IEEE Trans Pattern Anal Machine Intell,1997年,19卷,7期,677页 被引量:1
  • 9祝远新,智能接口与智能应用新进展.第2届全国智能接口与智能应用学术会议论文集,1997年,279页 被引量:1
  • 10EROL A, BEBIS G, NICOLESCU M, et al. Vision-based hand pose estimation: A review[J]. Computer Vision and Image Understanding, 2007,108(1/2) : 52-73. 被引量:1

共引文献178

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部