期刊文献+

基于深度学习的放置方式和位置无关运动识别 被引量:5

Deep learning based activity recognition independent of device orientation and placement
下载PDF
导出
摘要 针对传统基于加速度传感器的运动识别方法依赖于传感设备的放置方式和位置的问题,提出一种基于深度学习的运动识别方法,且与放置方式和位置无关.使用栈式自动编码器构建深度网络,结合逐层无监督学习和全局有监督微调的方式,快速、有效地学习出原始数据的深层特征.设计不同放置方式和不同设备放置位置的学习策略,并利用所学特征对不同设备放置方式和位置下的运动进行识别.实验结果表明:基于深度学习的方法可以从原始数据中提取出与放置方式和位置无关的深度特征,相比传统方法,能够有效提高在非固定加速度传感设备放置方式和位置下的运动识别准确率. An activity recognition method based on deep learning and independent of device orientation and placement was proposed,to address the problem that traditional acceleration activity recognition methods usually depend on the fixed device orientations and placements.Based on a layer-wise unsupervised learning and a global supervised fine-tuning,deep neural networks were constructed by stacked autoencoder.Then,the deep features of the proposed method were efficiently and effectively extracted from original acceleration data.Finally,a cross orientation and placement evaluation strategy was presented to recognize the activities under different device orientations and placements.Experimental results show that the proposed method can extract discriminative deep features from original data and achieve better performance than other methods under the condition of uncontrolled acceleration device orientation and placement.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第6期1141-1148,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60703040 61332017) 浙江省科技计划资助项目(2011C13042 2015C33002)
关键词 运动识别 传感设备位置 加速度传感设备 深度学习 普适计算 activity recognition sensor device placement acceleration sensor device deep learning pervasive computing
  • 相关文献

参考文献20

  • 1AMFT O, STAGER M, LUKOWICZ P, et al. Analy- sis of chewing sounds for dietary monitoring [C]// Pro- ceedings of International Conference on Ubiquitous Compu- ting. Tokyo : Springer, 2005:56 - 72. 被引量:1
  • 2ALBINALI F, GOODWIN M S, INTILLE S S. Recog- nizing stereotypical motor movements in the laboratory and classroom: a case study with children on the autism spectrum [C] // Proceedings of International Conference on Ubiquitous Computing. Orlando: ACM, 2009 : 71 - 80. 被引量:1
  • 3LADHA C, HAMMERLA N Y, OLIVIER P, et al. ClimbAX: skill assessment for climbing enthusiasts [C] // Proceedings of International Joint Conference on Per- vasive and Ubiquitous Computing. Zurich: ACM, 2013: 235 - 244. 被引量:1
  • 4ATALLAH L, YANG G Z. The use of pervasive sens- ing for behaviour profiling: a survey [J]. Pervasive and Mobile Computing, 2009, 5(5): 447-464. 被引量:1
  • 5DEVAUL R W, DUNN S. Real-time motion classifica- tion for wearable computing applications [R]. Cam- bridge: MIT Media Laboratory, 2001. 被引量:1
  • 6LEE S W, MASE K. Activity and location recognition using wearable sensors [J]. Pervasive Computing, 2002, 1(3) : 24- 32. 被引量:1
  • 7BAO L, INTILLE S S. Activity recognition from user- annotated acceleration data [C] /// Proceedings of Inter- national Conference on Pervasive Computing. Vienna: Springer, 2004: 1- 17. 被引量:1
  • 8KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers [J]. ACM SIGKDD Explorations Newsletter, 2011, 12(2) : 74 - 82. 被引量:1
  • 9RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data [C] /// Proceedings of Conference on Innovative Applications of Artificial In- telligence. Pittsburgh: AAAI, 2005: 1541- 1546. 被引量:1
  • 10OLGUIN D O, PENTLAND A S. Human activity rec- ognition: Accuracy across common locations for weara- ble sensors [C] // Proceedings of International Sympo- sium on Wearable Computers ( Student Colloquium). Montreux: IEEE, 2006: 11- 13. 被引量:1

二级参考文献13

  • 1Kang H,Woo Lee C,Jung K.Recognition-based gesture spotting in video games[J].Pattern Recognition Letters,2004,25(15):1701-1714. 被引量:1
  • 2Tentori M,Favela J.Activity-aware computing for healthcare[J].Pervasive Computing,IEEE,2008,7(2):51-57. 被引量:1
  • 3Kwapisz J R,Weiss G M,Moore S A.Activity recognition using cell phone accelerometers[J].ACM SIGKDD Explorations Newsletter,2011,12(2):74-82. 被引量:1
  • 4Bao L,Intille S S.Activity recognition from user-annotated acceleration data[M]∥Pervasive Computing.Springer Berlin Heidelberg,2004:1-17. 被引量:1
  • 5Ravi N,Dandekar N,Mysore P,et al.Activity recognition from accelerometer data[C]∥AAAI.2005:1541-1546. 被引量:1
  • 6Olguln D O,Pentland A S.Human activity recognition:Accuracy across common locations for wearable sensors,2006[C]∥Proceedings of International Symposium on Wearable Computers.2006:11-13. 被引量:1
  • 7Kunze K,Lukowicz P.Dealing with sensor displacement in motion-based onbody activity recognition systems[C]∥Proceedings of the 10th international conference on ubiquitous computing.ACM,2008:20-29. 被引量:1
  • 8Forster K,Roggen D,Troster G.Unsupervised classifier self-calibration through repeated context occurences:is there robustness against sensor displacement to gain?[C]∥International Symposium on Wearable Computers,2009(ISWC’09).IEEE,2009:77-84. 被引量:1
  • 9Lester J,Choudhury T,Borriello G.A practical approach to recognizing physical activities[M]∥Pervasive Computing.Springer Berlin Heidelberg,2006:1-16. 被引量:1
  • 10Chavarriaga R,Bayati H,Millán J D.Unsupervised adaptationfor acceleration-based activity recognition:robustness to sensor displacement and rotation[J].Personal and Ubiquitous Computing,2013,17(3):479-490. 被引量:1

共引文献6

同被引文献21

引证文献5

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部