期刊文献+

基于图的半监督学习的距离度量改进 被引量:1

Improved Distance Measure for Graph based Semi Supervised Learning
下载PDF
导出
摘要 基于图的半监督学习的一个关键问题是:图上顶点之间的距离度量的有效性问题。为了解决这个问题,提出了基于图的半监督学习的距离度量改进方法。通过在现有密度敏感的距离度量方案中添加补偿参数的方法,使得改进的距离度量方案不但能够有效地扩大不同类别的高密度区域样本间的距离,同时还能缩小相同类别中样本之间的距离。将改进的距离度量方案应用到聚类算法中,来验证改进的距离度量方案的有效性。实验结果表明:改进的距离度量方法能够有效地扩大不同类别间距离,增强类内聚合度。 A key problem in graph-based semi supervised learning is the effectiveness of distance measurement between the vertices of graph. In view of this,an improved distance measure method is proposed for semi-supervised learning. The method can effectively amplify the distance between data points in different high density region and reduces the distance between data points in the same high density region by adding an offset parameter. Then,a graph based semi supervised clustering algorithm is presented based on this improved distance measurement. Experimental results shows that the improved method can effectively increase the scatter of inter classes and reduce the scatter of intra-class.
作者 兰远东 高蕾
出处 《智能计算机与应用》 2014年第2期32-35,共4页 Intelligent Computer and Applications
基金 惠州市科技计划项目(2011B020006002 2013w10 2012B020004005 2013W15) 惠州学院校立自然科学基金(2012YB14)
关键词 半监督学习 距离度量 聚类 机器学习 Semi Supervised Learning Distance Measurement Clustering Machine Learning
  • 相关文献

参考文献6

二级参考文献47

  • 1Yu SX, Shi J. Segmentation given partial grouping constraints. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(2): 173-183. 被引量:1
  • 2Hertz T, Shental N, Bar-Hillel A, Weinshall D. Enhancing image and video retrieval: Learning via equivalence constraint. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Madison: IEEE Computer Society, 2003.668-674. 被引量:1
  • 3Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley CE, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning. Williamstown: Morgan Kaufmann Publishers, 2001. 577-584. 被引量:1
  • 4Klein D, Kamvar SD, Manning CD. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann AG, eds. Proc. of the 19th Int'l Conf. on Machine Learning. Sydney: Morgan Kaufmann Publishers, 2002. 307-314. 被引量:1
  • 5Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning. Morgan Kaufmann Publishers, 2000. 1103-1110. 被引量:1
  • 6Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B. Learning with local and global consistency. In: Thrun S, Saul L, SchSlkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004. 321-328. 被引量:1
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000,22(8): 888-905. 被引量:1
  • 8Gu M, Zha H, Ding C, He X, Simon H. Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering. Technical Report, CSE-01-007, Penn State University, 2001. 被引量:1
  • 9Ng AY, Jordan MI, Weiss Y. On spectral clustering: Analysis and an algorithm. In: Dietterich TG, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems (NIPS) 14. Cambridge: MIT Press, 2002, 894-856. 被引量:1
  • 10Meila M, Xu L. Multiway cuts and spectral clustering. Technical Report, 442, University of Washington, 2004. 被引量:1

共引文献125

同被引文献12

  • 1Stefan Fau~er, Friedhelm Schwenker. Semi-supervised clustering of large data sets with kernel methods [ J ]. Pattern Recognition Letters, 2014, 37:78 - 84. 被引量:1
  • 2Zhang Yihao, Wen Junhao, Wang Xibin, et al. Semi-supervised learning combining co-training with active learning [J]. Expert Systems with Applications, 2014, 41 (5) : 2372 - 2378. 被引量:1
  • 3Gan Haitao, Sang Nong, Huang Rui, et al. Using clustering analysis to improve semi-supervised classification [ J ]. Neurocomputing, 2013, 101 (1): 290-298. 被引量:1
  • 4Yin Xuesong, Shu Ting, Huang Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization [ J ]. Knowledge-Based Systems, 2012, 35:304 -311. 被引量:1
  • 5Yin Xuesong, Chen Songcan, Hu Enliang, et al. Semi-supervised clustering with metric learning: an adaptive kernel method [J]. Pattem Recognition, 2010, 43:1320 - 1333. 被引量:1
  • 6Mahdieh Soleymani Baghshah, Saeed Bagheri Shouraki. Kernel-based metric learning for semi-supervised clustering [ J ]. Neurocomputing, 2010, 73:1352 - 1361. 被引量:1
  • 7WitoldPedrycz.基于知识的聚类——从数据到信息粒[M].于福生,译.北京:北京师范大学出版社,2008:79—87. 被引量:1
  • 8李春芳,庞雅静,钱丽璞,高爱华.半监督FCM聚类算法目标函数研究[J].计算机工程与应用,2009,45(14):128-132. 被引量:14
  • 9计华,张化祥,孙晓燕.基于最近邻原则的半监督聚类算法[J].计算机工程与设计,2011,32(7):2455-2458. 被引量:7
  • 10施伟民,杨昔阳,李志伟.基于半监督模糊聚类的黄瓜霜霉病受害程度识别研究[J].福建师范大学学报(自然科学版),2012,28(1):33-37. 被引量:7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部