期刊文献+

一种基于密度敏感的自适应谱聚类算法 被引量:5

A Kind of Density Sensitive Adaptive Spectral Clustering Algorithm
原文传递
导出
摘要 针对传统的谱聚类算法不适合处理多尺度问题,引入一种新的相似性度量—密度敏感的相似性度量,该度量可以放大不同高密度区域内数据点间距离,缩短同一高密度区域内数据点间距离,最终有效描述数据的实际聚类分布.本文引入特征间隙的概念,给出一种自动确定聚类数目的方法.数值实验验证本文所提的算法的可行性和有效性. According to the traditional spectral clustering algorithm is not suitable for processing some multi-scale problems,this paper introduces a new similarity measure-density sensitive similarity measure,this measure can magnify the distance between the data points in the different high density area,and at the same time,shorten the distance between the data points in the same high density area,and finally can effectively describe the actual data clustering distribution.At the same time,this paper introduces the concept of characteristics gap,presents a new automatic sure clustering number of methods.And through the numerical experiments show this paper proposed the feasibility and effectiveness of the algorithm.
作者 张亚平 杨明
出处 《数学的实践与认识》 CSCD 北大核心 2013年第20期150-156,共7页 Mathematics in Practice and Theory
基金 山西省自然科学基金(2010011002-1) 国家自然科学基金(61171179)
关键词 谱聚类 密度敏感度量 特征间隙 spectral clustering density sensitive measurement characteristics gap
  • 相关文献

参考文献12

  • 1Fisher D H. Knowledge acquisition via incremental conceptual clustering[J]. Machine Learning, 1987, 2(2): 139-172. 被引量:1
  • 2David T, Shafagh F, Joseph B. A spectral clustering method for microarray data[J]. Computational Statistics and Data Analysis, 2005(49): 63 -76. 被引量:1
  • 3Chen W F, Feng G C. Spectral clustering with discriminate cuts[J]. Knowledge-Based Systems, 2012(28): 27-37. 被引量:1
  • 4Qiu H J, Edwin R. Graph matching and clustering using spectral partitions[J]. Pattern Recognition, 2006(39): 22-34. 被引量:1
  • 5Qin G M, Gao L. Spectral clustering for detecting protein complexes in protein-protein interaction (PPI) networks[J]. Mathematical and Computer Modeling, 2010(52): 2066-2074. 被引量:1
  • 6Perona P, Freeman W T. A factorization approach to grouping[J]. European Conference on Com?puter Vision, 1998, 99(3): 655-670. 被引量:1
  • 7Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical val?ues[J]. ACM SIGMOD Record, 1999, 28(2): 49-60. 被引量:1
  • 8Ng A Y, Jordan M I, Weiss Y. On spectral clustering: analysis and an algorithm],']. Advance in Neural Information Processing Systems, 2002, 2: 849-856. 被引量:1
  • 9Maurizio F, Francesco C, Francesco M, Stefano R. A survey of kernel and spectral methods for clustering[J]. Pattern Recognition, 2008(41): 176-190. 被引量:1
  • 10Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. 被引量:1

二级参考文献16

  • 1Bach R, Jordan M I. Learning spectral clustering. University of California at Berkeley Technical report UCB/CSD-03-1249.2003 被引量:1
  • 2Xing E P, Jordan M I. On semidefinite relaxation for normalized k-cut and connections to spectral clustering. University of California at Berkeley Technical report UCB/CSD-3- 1265. 2003 被引量:1
  • 3Donath W E, Hoffman A J. Lower bounds for partitioning of graphs. IBM J Res Develop, 1973, 17(5): 420-425 被引量:1
  • 4Fiedler M. A property of eigenvectors of non-negative symmetric matrices and its application to graph theory. Czech Math J,1975, 25(100): 619-633 被引量:1
  • 5Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput-Aided Des Integr Circuits Syst, 1992, 11(9): 1074-1085 被引量:1
  • 6Chan P K, Schlag M D E Zien J Y. Spectral k-way ratio-cut partitioning and clustering. IEEE Trans Comput-Aided Des Integr Circuits syst, 1994, 13(9): 1088-1096 被引量:1
  • 7Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell, 2000, 22(8): 888-905 被引量:1
  • 8Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom method. IEEE Trans Pattern Anal Mach Intell,2004, 26(2): 214-225 被引量:1
  • 9Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering. In: Cercone N, Lin T Y,Wu X, eds. ICDM 2001. Los Alamitos, California: IEEE Computer Society, 2001. 107-114 被引量:1
  • 10Ding C H Q, He X, Zha H. A spectral method to separate disconnected and nearly-disconnected web graph components. In:Provost F, Srikant R, eds. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2001. 275-280 被引量:1

共引文献32

同被引文献38

  • 1田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33
  • 2王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 3Yuan Huaqiang,Ye Yangdong,Deng Jianguang,Chai Xiaoguang,Li Yong.A fingerprint feature extraction algorithm based on curvature of Bezier curve[J].Progress in Natural Science:Materials International,2007,17(11):1376-1381. 被引量:5
  • 4GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian-mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. 被引量:1
  • 5MAHLER R. PHD filters for nonstandard targets: I extended targets [C]//Proceedings of the 12th Inter- national Conference on Information Fusion. Piscat-away, NJ, USA: IEEE, 2009: 915-921. 被引量:1
  • 6GRANSTROM K, LUNDQUIST C, ORGUNER U. A Gaussian mixture PHD filter for extended target tracking [C]//Proceedings of the 13th International Conference on Information Fusion. Piscataway, NJ, USA.. IEEE, 2010: 1-8. 被引量:1
  • 7ORGUNER U C, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized proba- bility hypothesis density filter [C]///Proceedings of the 14th International Conference on Indormation Fusion. Piscataway, NJ, USA.. IEEE, 2011: 5-8. 被引量:1
  • 8LIAN F, HAN C Z. Unified cardinalized probability hypothesis density filters for extended targets and un- resolved targets [J]. Signal Processing, 2012, 92(7).. 1729-1744. 被引量:1
  • 9ZHANG Y Q, JI H B. A novel fast partitioning algo- rithm for extended target tracking using a Gaussian mixture PHD filter [J]. Signal Processing, 2013, 93 (11) : 2975-2985. 被引量:1
  • 10TSAI C W, YANG C S, CHIANG M C. A time effi- cient pattern reduction algorithm for k-means based clustering [C] // IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2007: 504-509. 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部