期刊文献+

运用区间二型模糊集的半监督模糊聚类算法

Partial Supervised Fuzzy Clustering Algorithm Based onInterval Type-2 Fuzzy Sets
下载PDF
导出
摘要 将区间二型模糊集引入半监督聚类,提出一种运用区间二型模糊集的半监督聚类算法.该算法以区间二型模糊集为隶属度,将已标识样本的类别标签融入目标函数,使得聚类算法可以在已标识样本类别信息的引导下,得到合理的隶属度.实验表明,相比其他聚类模型,结合半监督机制和区间二型模糊集的聚类算法具有更好的聚类性能. In this paper,interval type-2 fuzzy sets are introduced into partial supervised clustering,and a partial supervised clustering algorithm based on interval type-2 fuzzy sets is proposed.This algorithm takes interval type-2 fuzzy sets as the membership degree,and integrates the class label of the labeled samples into the objective function,so that the clustering algorithm can get a reasonable membership degree under the guidance of the label information of the labeled samples.Experiments show that the clustering algorithm combining partial supervised mechanism and interval type-2 fuzzy sets has better clustering performance than other clustering models.
作者 杨昔阳 陈豪 张诗晴 YANG Xiyang;CHEN Hao;ZHANG Siqing(Fujian Provincial Key Laboratory of Data-Intensive Computing(Quanzhou Normal University),Quanzhou Fujian 362000,China;Key Laboratory of Intelligent Computing and Information Processing(Quanzhou Normal University),Quanzhou Fujian 362000,China;Fujian Key Laboratory of Financial Information Processing(Putian University),Putian Fujian 351100,China)
出处 《泉州师范学院学报》 2023年第2期1-8,共8页 Journal of Quanzhou Normal University
基金 福建省自然科学基金(2021J01001) 泉州市科技局资助项目(2021N042) 福建省金融信息处理重点实验室(莆田学院)开放课题(JXC202205) 国家大学生创新创业训练项目(202210399013)。
关键词 半监督聚类算法 区间二型模糊集 模糊聚类 半监督机制 partial supervised clustering interval type-2 fuzzy sets fuzzy clustering partial supervised mechanism
  • 相关文献

参考文献10

二级参考文献54

  • 1汪培庄.因素空间与因素库[J].辽宁工程技术大学学报(自然科学版),2013,32(10):1297-1304. 被引量:60
  • 2张菊丽,王新民,张举中.基于牛顿插值算法的模糊控制器[J].模糊系统与数学,2007,21(2):87-91. 被引量:6
  • 3王颖,陈松灿,张道强,杨绪兵.模糊k-平面聚类算法[J].模式识别与人工智能,2007,20(5):704-710. 被引量:5
  • 4Stefan Fau~er, Friedhelm Schwenker. Semi-supervised clustering of large data sets with kernel methods [ J ]. Pattern Recognition Letters, 2014, 37:78 - 84. 被引量:1
  • 5Zhang Yihao, Wen Junhao, Wang Xibin, et al. Semi-supervised learning combining co-training with active learning [J]. Expert Systems with Applications, 2014, 41 (5) : 2372 - 2378. 被引量:1
  • 6Gan Haitao, Sang Nong, Huang Rui, et al. Using clustering analysis to improve semi-supervised classification [ J ]. Neurocomputing, 2013, 101 (1): 290-298. 被引量:1
  • 7Yin Xuesong, Shu Ting, Huang Qi. Semi-supervised fuzzy clustering with metric learning and entropy regularization [ J ]. Knowledge-Based Systems, 2012, 35:304 -311. 被引量:1
  • 8Yin Xuesong, Chen Songcan, Hu Enliang, et al. Semi-supervised clustering with metric learning: an adaptive kernel method [J]. Pattem Recognition, 2010, 43:1320 - 1333. 被引量:1
  • 9Mahdieh Soleymani Baghshah, Saeed Bagheri Shouraki. Kernel-based metric learning for semi-supervised clustering [ J ]. Neurocomputing, 2010, 73:1352 - 1361. 被引量:1
  • 10WitoldPedrycz.基于知识的聚类——从数据到信息粒[M].于福生,译.北京:北京师范大学出版社,2008:79—87. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部