期刊文献+

基于辅助训练的半监督稀疏表示分类器用于脑电图分类 被引量:1

Application of Semi-supervised Sparse Representation Classifier Based on Help Training in EEG Classification
原文传递
导出
摘要 脑机接口(BCI)脑电图(EEG)分类能实现人脑直接与外部环境的信息交互。提出了基于辅助训练思想的半监督稀疏表示分类器方法在BCI EEG分类中的应用。首先采用稀疏表示分类器从未标记样本中选择部分相关度较高的样本。其次采用Fisher线性分类器作为判别分类器得到已选样本的边界信息。通过距离大小和方向判别条件进一步选出高置信度样本。本文对三组基准数据集BCIⅠ、BCIⅡ_Ⅳ和USPS分别进行仿真实验,分类正确率分别为97%、82%和84.7%,运算速度最快的仅需约0.2s。在分类正确率和运算效率两个方面,均优于自训练半监督SVM、有导师SVM两种方法。 Electroencephalogram (EEG) classification for brain-computer interface (BCI) is a new way of realizing human-computer interreaction. In this paper the application of semi-supervised sparse representation classifier algorithms based on help training to EEG classification for BCI is reported. Firstly, the correlation information of the unlabeled data is obtained by sparse representation classifier and some data with high correlation selected. Secondly, the boundary information of the selected data is produced by discriminative classifier, which is the Fisher linear classifier. The final unlabeled data with high confidence are selected by a criterion containing the information of distance and direction. We applied this novel method to the three benchmark datasets, which were BCI I , BCI Ⅱ_Ⅳ and USPS. The classification rate were 97% ,82% and 84.7%, respectively. Moreover the fastest arithmetic rate was just about 0.2 s. The classification rate and efficiency results of the novel method are both better than those of S3VM and SVM, proving that the proposed method is effective.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2014年第1期1-6,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61074195) 河北省自然科学基金资助项目(F2010001281 A2010001124)
关键词 半监督学习 稀疏表示分类器 辅助训练 自训练 脑电图 脑机接口 semi-supervised learning sparse representation classifier help training self-training electroencephalogram brain-computer interface
  • 相关文献

参考文献13

二级参考文献46

  • 1杨帮华,颜国正,张永怀,付西光.脑机接口中一种改进的模式识别方法[J].中国生物医学工程学报,2006,25(2):234-237. 被引量:3
  • 2Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002,113(7) :67 - 91. 被引量:1
  • 3Millan JDR. Brain-computer interfaces [A]. In: Arbib MA eds. Handbook of Brain Theory and Neural Networks [ M ]. (2nd Edition). Cambridge : MIT Press, 2002.6 - 10. 被引量:1
  • 4Vaughan TM. Guest editorial brain-computer interface technology: a review of the second international meeting [J]. IEEE Trans Rehabil Eng,2003,11:94- 109. 被引量:1
  • 5Wu Zhenhua, Yao Dezhong. Frequency detection based on stability coefficient for SSVEP-based BCIs [ J ]. Journal of Neural Engineering,2008,5:36 - 43. 被引量:1
  • 6Wu Zhenhua, Yao Dezhong. Stimulator selection in SSVEP-based BCI [J]. Medical Engineering & Physics (in press) 被引量:1
  • 7Liao Xiang,Yao Dezhong, Li Chaoyi. Combining Spatial Filters for the Classification of Single-Trial EEG in a Finger Movement Task [J]. IEEE Trans Biomed Eng,2007,54(5) :821 - 831. 被引量:1
  • 8Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [ J ]. Clin Neurophysiol, 1999,110 : 1842 - 1857. 被引量:1
  • 9Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a movement task [J]. Clin Neurophysiol, 1999,110:787 - 798. 被引量:1
  • 10Dornhege G. Increasing information transfer rates for brain-computer interfacing [ D]. Potsdam: University of Potsdam,2006. 被引量:1

共引文献96

同被引文献15

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部