期刊文献+

辅助训练的半监督线性支持向量机用于EEG分类 被引量:3

Semi-supervised linear SVM using help training for EEG classification
下载PDF
导出
摘要 研究了基于辅助训练思想的半监督线性支持向量机方法在脑机接口EEG分类中的应用。首先采用高斯混合模型、Parzen窗、KN-近邻估计三种方法估计概率密度,得到未标记样本的密度信息,选择部分概率较高样本,使用比较置零法避免错分。其次采用线性支持向量机作为判别分类器得到已选样本的边界信息,通过距离判别条件选出高置信度的样本,使用方向判别条件避免错分。结合密度和边界信息完成高置信度未标记样本选择的方法称为辅助训练半监督支持向量机。本文的实验数据包括g50c、BCIⅠ、BCIⅡ_Ⅳ、USPS,分类正确率分别为91.6%,97%,84%,90.4%,运算速度最慢的仅需约3.5 s。在分类正确率和运算效率两个方面,均优于自训练半监督SVM、监督SVM两种方法。 Abstract:In this paper the application of semi-supervised cation for brain-computer interface (BCI) is investigated. linear SVM algorithm using help training in EEG classifi- Firstly, GMM, Parzen window and KN-neighbor estimation methods are adopted to estimate the probability density of the unlabeled data, and the probability density information of the unlabeled data samples is obtained;some data samples with high probabilities are selected. To avoid misclassi- fication, the strategy called compare and return to zero is applied. Secondly, the linear SVM is used as discriminative classifier to obtain the boundary information of the selected data samples. The final unlabeled data samples with high confidence are selected using the criterion containing distance information, and the direction criterion is used to avoid misclassification. This method is called semi-supervise linear support vector machine using help training, which com- bines the information of density and boundary to select the unlabeled data samples with high confidence. This method is applied to four groups datasets of benchmark, which are gS0c, BCI I , BCI lI _ IV, USPS, and their classification correct rates are 91.6% ,97% ,84% and90.4% ,respectively. Moreover,the operation at the slowest speed needs on- ly about 3.5 s. The results indicate that the new method is superior to self training semi-supervised SVM and super- vised SVM methods in the respects of classification correct rate and operation efficiency, which proves that the pro- posed new method is effective.
作者 王金甲 贾敏
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期768-773,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61074195) 河北自然科学基金(F2010001281 A2010001124)资助项目
关键词 辅助训练 半监督学习 半监督线性支持向量机 脑机接口 help training semi-supervise learning semi-supervised linear SVM brain-computer interface ( BCI)
  • 相关文献

参考文献15

  • 1ADALI T, MILLER D J, DIAMANTARAS K I,et al. Trends in machine learning for signal processing [J]. IEEE Signal Processing Magazine,2011,28(6) :193-196. 被引量:1
  • 2ZHOU ZH H. When semi-supervised learning meets ensemble learning[J]. Frontiers of Electrical and Electronic Engineering in China,2011,6( 1 ) :6-16. 被引量:1
  • 3GAO Yan-Yu,YIN Yi-Xin,UOZUMI Takashi.A Hierarchical Image Annotation Method Based on SVM and Semi-supervised EM[J].自动化学报,2010,36(7):960-967. 被引量:8
  • 4王安娜,李云路,赵锋云,史成龙.一种新的半监督直推式支持向量机分类算法[J].仪器仪表学报,2011,32(7):1546-1550. 被引量:22
  • 5CHEN K, WANG SH H. Semi-supervised learning via regularized boosting working on muhiple semi-supervised assumptions[ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence ,2011,33 ( 1 ) : 129-143. 被引量:1
  • 6王新颖,王生生,吕天阳,王钲旋.一种用于三维模型检索的半监督距离度量学习方法[J].仪器仪表学报,2010,31(6):1399-1404. 被引量:3
  • 7贾敏..脑机接口中半监督分类方法研究[D].燕山大学,2012:
  • 8TIAN X L, GASSO G, CANU S. A multiple kernel frame- work for inductive semi-supervised SVM learning. Neuro- computing,2012,90( 1 ) :46-58. 被引量:1
  • 9LI Y Q, GUAN C T, Zheng C H, et al. A self-training semi-supervised support vector machine algorithm and its applications in brain computer interface [ J ]. IEEE Transactions on Muhimedia,2007,28( 1 ) :385-388. 被引量:1
  • 10BLUM A, MITCHELL T. Combining labeled and unla- beled data with co-training [ C ]. Proceeding of the 11th Annual Conference on Computational Learning Theory, 1998,11 ( 1 ) :92-100. 被引量:1

二级参考文献48

  • 1杨育彬,林珲,朱庆.基于内容的三维模型检索综述[J].计算机学报,2004,27(10):1297-1310. 被引量:95
  • 2FUNKHOUSER T,MIN P,KAZHDAN M,et al.,A search engine for 3D models[J].ACM Transactions on Graphics,2003,22(1):83-105. 被引量:1
  • 3LAGA H,TAKAHASHI H,NAKAJIMA M.Spherical wavelet descriptors for content-based 3D model retrieval[C].Shape Modeling and Applications 2006,IEEE International Conference,2006,14-16:15-20. 被引量:1
  • 4SHIH J L,LEE C H,WANG J T,A new 3D model retrieval approach based on the elevation descriptor[J].Pattern Recognition,2007,40:283-295. 被引量:1
  • 5WONG H S,MA B,SHA Y,et al.3D head model retrieval in kernel feature space using HSOM[J].Pattern Recognition,2008,41(2):468-483. 被引量:1
  • 6RONG Z,WILLIAM I G.Negotiating the semantic gap:from feature maps to semantic landscapes[J].Pattern Recognition,2002,35(3):593-600. 被引量:1
  • 7NOAM S,TOMER H,DAPHNA W,et al.Adjustment learning and relevant component analysis[C].Proc.European Conference of Computer Vision(ECCV),Copenhagen,2002:776-790. 被引量:1
  • 8JOACHIMS T.Trausductive inference for text classification using support vector machines[C].Proc.International Conference on Machine Learning(ICML),1999:200-209. 被引量:1
  • 9ZHO X.Semi-supervised learning with graphs[D].Pittsburgh:Carnegie Mellon University,2005:140-141. 被引量:1
  • 10PHILIP S,PATRICK M,MICHAEL K,et al.The Princeton Shape Benchmark[C].Shape Modeling International,Genova,Italy,2004:388-399. 被引量:1

共引文献30

同被引文献39

  • 1郭北苑,方卫宁.人机交互中基于眼动仪的输入技术研究[J].仪器仪表学报,2004,25(z1):55-57. 被引量:8
  • 2张毅,祝翔,罗元.基于SVM多分类技术的肌电辅助脑电智能轮椅控制系统[J].中南大学学报(自然科学版),2013,44(S2):73-76. 被引量:3
  • 3TAX D M J, DUIN R P. Support vector data descrip- tion[ J]. Machine Learning, 2004, 54(1) : 45-66. 被引量:1
  • 4GUO S M, CHEN L C, TSAI J SH. A boundary method for outlier detection based on support vector domain de- scription [ J ]. Pattern Recognition, 2009, 42 ( 1 ) : 77 -83. 被引量:1
  • 5WANG S, YU J, LAPIRA E, et al. A modified support vector data description based novelty detection approach for machinery components [ J ]. Applied Soft Computing, 2012, 13: 1193-1205. 被引量:1
  • 6LIU Y H, LIU Y C, CHEN Y J. Fast support vector data descriptions for novelty detection[ J]. IEEE Transactions on Neural Networks, 2010, 21(8) : 1296-1313. 被引量:1
  • 7LIU B, XIAO Y S, CAO L B, et al. SVDD-based outlier detection on uncertain data[ J3. Knowledge and Informa- tion Systems, 2013, 34(3): 597-618. 被引量:1
  • 8NIAZMARDI S, HOMAYOUNI S, SAFARI A. An im- proved FCM algorithm based on the SVVD for unsuper- vised hyperspectral data classification [ J ]. IEEE Journal of Selected Topics in Applied Earth Observations and Re- mote Sensing, 2013, 6(2) : 831-839. 被引量:1
  • 9YU J, LEE B B, PARK D H. Real-time cooling load forecasting using a hierarchical multi-class SVDD [ J ]. Multimedia Tools and Applications, 2013 : 1-15. 被引量:1
  • 10TSANG I W, KWOK J T, CHEUNG P M. Core vector machines: Fast SVM training on very large data sets [ J ]. Journal of Machine Learning Research, 2006, 6 ( 1 ) : 363-392. 被引量:1

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部