期刊文献+

Web性能测试与预测 被引量:8

Web Performance Testing and Prediction
下载PDF
导出
摘要 讨论了Web应用的性能测试方法和测试工具,并在一个Web应用的实例中给出了运用这些工具和方法的测试过程,以及对测试结果的分析.设计了一种基于转导推理的预测算法,基于有限的历史测试数据,对系统的性能进行预测,并取得了接近实测的预测效果.还根据测试结果简要分析了对Web应用性能进行优化的一般方法. This paper discusses performance testing and optimization method of a Web Application and gives a practical sample to show how to test performance of a Web Application and analyzes the testing result. A transductive inference based algorithm is designed to predict system performance based on limited historical testing data. This paper also discusses briefly how to optimize the performance of a Web Application based on testing result in a general way.
出处 《中国科学院研究生院学报》 CAS CSCD 2005年第4期472-479,共8页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家科技部"国家重点实验室网上合作研究平台"项目 ( 2 0 0 3DEA5G0 40 ) 中国科学院研究生院院长基金(YZJJ2 0 0 2 0 6)资助
关键词 WEB应用 性能测试 转导推理 Web Application, performance testing, transductive inference
  • 相关文献

参考文献1

二级参考文献17

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995. 被引量:1
  • 2[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996. 被引量:1
  • 3[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297. 被引量:1
  • 4[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998. 被引量:1
  • 5[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156. 被引量:1
  • 6[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209. 被引量:1
  • 7[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152. 被引量:1
  • 8[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77. 被引量:1
  • 9[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285. 被引量:1
  • 10[10]Joachims T. Making large-scale SVM learning practical. In: Scholkopf, Burges C, Smola A, eds. Advances in Kernel Methods--Support Vector Learning B. MIT Press, 1999. 被引量:1

共引文献87

同被引文献54

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部