期刊文献+

一类随机SIS流行病模型全局正解的渐近行为 被引量:4

Asymptotic Behavior of Global Positive Solution to a Stochastic SIS Epidemic Model
下载PDF
导出
摘要 考虑了一类恢复率受到环境噪声影响的随机SIS流行病模型,并研究了其渐近行为.通过停时及Lyapunov分析法,首先证明了模型正解的全局存在惟一性和有界性.其次证明了当基本再生数不大于1时,无病平衡点是随机渐近稳定,此时疾病将绝灭;当基本再生数大于1时,通过计算随机模型的解与确定性模型地方病平衡点之间差距的时间均值,得到了随机模型的解围绕确定性模型地方病平衡点振荡,并得到了系统平均持续和疾病绝灭的充分条件.最后,通过数值仿真验证了本文的理论结果. In this paper, we consider a stochastic SIS epidemic model in which the recovery rate is influenced by white noise in the environment, and the asymptotic behavior of this model is studied. With the help of stopping time and Lyapunov analysis method, we first show the global existence, uniqueness and boundedness of the positive solution. Then, we prove that: when the basic reproduction number is less than or equal to one, the disease-free equilibrium is stochastically asymptotical stability, which means the disease will die out; on the other hand, when the basic reproduction number is greater than one, the solution is oscillating around the endemic equilibrium of the deterministic model, which is measured by the average difference between the solution of the stochastic model and the endemic equilibrium of the deterministic model. Furthermore, we obtain the sufficient conditions of persistence in the mean and extinction of the disease. Finally, numerical simulations are carried out to verify our theoretical results.
出处 《工程数学学报》 CSCD 北大核心 2013年第6期804-814,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11271260) 上海市一流学科项目(XTKX2012) 上海市教委科研创新重点项目(13ZZ116)~~
关键词 随机SIS流行病模型 LYAPUNOV函数 It6公式 全局正解 渐近行为 stochastic SIS epidemic model Lyapunov function It6's formula global positivesolution asymptotic behavior
  • 相关文献

参考文献4

二级参考文献7

同被引文献28

  • 1祝丽萍,陈琳,岳华.金融数学模型及其非参数估计问题[J].高等财经教育研究,2008,11(S1):38-38. 被引量:4
  • 2周明磊.非参数估计与小波分析在股市趋势线中应用的实证研究[J].徐州师范大学学报(自然科学版),2004,22(3):17-21. 被引量:1
  • 3XIAOYanni,CHENLansun.ON AN SIS EPIDEMIC MODEL WITH STAGE STRUCTURE[J].Journal of Systems Science & Complexity,2003,16(2):275-288. 被引量:8
  • 4陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006. 被引量:1
  • 5Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128. 被引量:1
  • 6Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688. 被引量:1
  • 7Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721. 被引量:1
  • 8Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742. 被引量:1
  • 9Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32. 被引量:1
  • 10van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部