期刊文献+

一类具有变人口规模的含时滞SIS流行病模型的稳定性分析 被引量:2

Stability Analysis on an SIS Epidemiologic Model with Delay and a Variable Population Size
下载PDF
导出
摘要 建立了一类含染病期时滞、考虑因病死亡且具有双线性传染率的SIS流行病模型,其人口动力学结构是人口常数输入与自然死亡.确定了疾病传播的基本再生数;得到了无病平衡点全局渐近稳定以及地方病平衡点局部渐近稳定的条件. The delay existing in SIS epidemiologic model corresponds to an infectious period and disease related deaths.and hence the population size becomes variable. In the model, the population dynamics structure includes the recruitment for natural deaths and the incidence term belongs to the simple mass action incidence. The thresholds and equilibrium were determined, and the stabili- ties were examined. The local stability of all kinds of equilibria and the global stability of the dis- ease-free equilibrium.
出处 《上海理工大学学报》 CAS 北大核心 2012年第1期27-31,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(10871129) 上海市教委科研创新基金资助项目(09YZ208)
关键词 SIS流行病模型 平衡点 基本再生数 稳定性 SIS epidemic model equilibrium basic reproduction stability
  • 相关文献

参考文献2

二级参考文献1

共引文献17

同被引文献19

  • 1原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 2陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006. 被引量:1
  • 3Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128. 被引量:1
  • 4Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688. 被引量:1
  • 5Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721. 被引量:1
  • 6Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742. 被引量:1
  • 7Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32. 被引量:1
  • 8van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. 被引量:1
  • 9Zhou Y L,Zhang W G,Yuan S L.Survival and stationary distribution of a SIR epidemic model with stochastic perturbations[J].Applied Mathematics And Computation,2014,244:118-131. 被引量:1
  • 10Jiang D Q,Yu J J,Ji C Y,et al.Asymptotic behavior of global positive solution to a stochastic SIR model[J].Mathematical and Computer Modelling,2011,54(1/2):221-232. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部