摘要
研究了一类具有非线性发生率和时滞的随机SISV传染病模型。利用Lyapunov函数和Itô公式证明了随机模型存在全局唯一正解。对非时滞和含时滞随机SISV传染病模型进行了线性化并得到了对应模型的解的均方指数稳定性。在白噪声适当的扰动条件下,证明了系统是依概率稳定的。
A stochastic SISV model with time-delay and nonlinear incidence rate was considered.The global existence and positivity of the solution were obtained by means of Lyapunov function and Itôformula.The linearization of the systems without or with time delay was carried out and their exponential mean square stability was studied.The stochastic stability of the steady state of the system was proved under the condition of suitable white noise perturbations.
作者
周艳丽
任同擎
陈立范
王宏杰
ZHOU Yanli;REN Tongqing;CHEN Lifan;WANG Hongjie(College of Arts and Science,Shanghai University of Medicine and Health Sciences,Shanghai 201318,China)
出处
《上海理工大学学报》
CAS
CSCD
北大核心
2021年第1期49-58,共10页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金青年科学基金资助项目(31700466)。
关键词
随机SISV模型
随机稳定
时滞
非线性传染率
stochastic SISV model
stochastic stabitily
time delay
nonlinear incidence rate