期刊文献+

一类具有时滞的随机SISV传染病模型的稳定性 被引量:1

Stablilty of a stochastic SISV model with time delay
下载PDF
导出
摘要 研究了一类具有非线性发生率和时滞的随机SISV传染病模型。利用Lyapunov函数和Itô公式证明了随机模型存在全局唯一正解。对非时滞和含时滞随机SISV传染病模型进行了线性化并得到了对应模型的解的均方指数稳定性。在白噪声适当的扰动条件下,证明了系统是依概率稳定的。 A stochastic SISV model with time-delay and nonlinear incidence rate was considered.The global existence and positivity of the solution were obtained by means of Lyapunov function and Itôformula.The linearization of the systems without or with time delay was carried out and their exponential mean square stability was studied.The stochastic stability of the steady state of the system was proved under the condition of suitable white noise perturbations.
作者 周艳丽 任同擎 陈立范 王宏杰 ZHOU Yanli;REN Tongqing;CHEN Lifan;WANG Hongjie(College of Arts and Science,Shanghai University of Medicine and Health Sciences,Shanghai 201318,China)
出处 《上海理工大学学报》 CAS CSCD 北大核心 2021年第1期49-58,共10页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金青年科学基金资助项目(31700466)。
关键词 随机SISV模型 随机稳定 时滞 非线性传染率 stochastic SISV model stochastic stabitily time delay nonlinear incidence rate
  • 相关文献

参考文献3

二级参考文献23

  • 1王拉娣,李建全.一类带有非线性传染率的SEIS传染病模型的定性分析[J].应用数学和力学,2006,27(5):591-596. 被引量:22
  • 2陆征一,周义仓. 生物数学进展[M].北京: 科学出版社,2006. 被引量:1
  • 3Gumel A B,McCluskey C C,van den Driessche P.Mathematical study of a staged-progression HIV model with imperfect vaccine[J].Bulletin of Mathematical Biology,2006,68(8):2105-2128. 被引量:1
  • 4Shan C H,Zhu H P.Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[J].Journal of Differential Equations,2014,257(5):1662-1688. 被引量:1
  • 5Kermack W O,Mckendrick A G.A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772):700-721. 被引量:1
  • 6Liu X Z,Stechlinski P.SIS models with switching and pulse control[J].Applied Mathematics and Computation,2014,232:727-742. 被引量:1
  • 7Busenberg S,Cooke K L.The effect of integral conditions in certain equations modelling epidemics and population growth[J].Journal of Mathematical Biology,1980,10(1):13-32. 被引量:1
  • 8van den Driessche P,Watmough J.A simple SIS epidemic model with a backward bifurcation[J].Journal of Mathematical Biology,2000,40(6):525-540. 被引量:1
  • 9Zhou Y L,Zhang W G,Yuan S L.Survival and stationary distribution of a SIR epidemic model with stochastic perturbations[J].Applied Mathematics And Computation,2014,244:118-131. 被引量:1
  • 10Jiang D Q,Yu J J,Ji C Y,et al.Asymptotic behavior of global positive solution to a stochastic SIR model[J].Mathematical and Computer Modelling,2011,54(1/2):221-232. 被引量:1

共引文献8

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部