期刊文献+

一种基于贪心算法的快速PCA算法 被引量:3

A new fast principal component analysis based on greedy algorithm
下载PDF
导出
摘要 提出一种快速算法,该算法利用贪心算法构造卷数据降维矩阵,在保持点与点之间"核距离"不变的情况下,把待分解矩阵变换成一个低维矩阵。在没有偏差的情况下,将对原始大矩阵的分解变成对这个低维矩阵的分解,大幅降低了时间复杂度,减少了对内存的使用率的同时增加了算法的稳定性。 The authors present a fast algorithm that uses the greedy algorithm to make wrapped dimensionality reduction data matrix in order to keep "nuclear distance" between points unchanged. The original matrix needed to be decomposed has been transformed into a low-dimensional matrix in the case of no deviation. Therefore we significantly reduce the time complexity and memory usage while increasing the stability of the algorithm.
出处 《微型机与应用》 2013年第19期72-75,78,共5页 Microcomputer & Its Applications
基金 国家自然科学基金项目(61105085)
关键词 主成分分析 贪心算法 卷数据降维矩阵 时间复杂度 PCA(Principal Component Analysis) greedy algorithm wrapped dimensionality reduction data matrix time complexity
  • 相关文献

参考文献3

二级参考文献24

  • 1冯毅,王香华.小波变换降噪处理及其Matlab实现[J].数据采集与处理,2006,21(B12):37-39. 被引量:21
  • 2唐湘燕,陈效华.基于神经网络的火炮自动供输弹装置故障预测[J].火炮发射与控制学报,2007,28(1):54-58. 被引量:11
  • 3WRIGHT J, PENG Yi-gmg, MA Yi. Robust principal component analysis : exact recovery of corrupted low-rank matrices by convex opti- mization[ C ]//Advance in Neural Information Processing Systems. 2009 : 2080- 2088. 被引量:1
  • 4WU Xiao-jun,JOSEF K,YANG Jing-yu,et al. A new direct LDA (D- LDA) algorithm for feature extraction in flce recognition [ C ]//Proe of the 17th International Conference on Pattern Recognition. 2004:545- 548. 被引量:1
  • 5HYVARINEN A, OJA E. Independent component analysis: algo- rithms and applications [Jl. Noural Networks,2000,'13(4-5) :411- 430. 被引量:1
  • 6ZHAO Ying,ATKESON C G. Implementing projection pursuit learning [J]. IEEE Trans on Neural Networks,1996,7(2) :362-373. 被引量:1
  • 7NICOLAS G, FRANCOIS G. A multilevel approach Ior nonnegative matrix faetorization [ J ]. Journal of Computational and Applied Mathematics, 2012,236 ( 7 ) : 1708-1723. 被引量:1
  • 8BURGES C J C. Dimension reduction:a guided tour[ J ]. Founda- tions and Trends in Machine Learning,2009,2(4) :275-365. 被引量:1
  • 9AILON N, CHAZELLE B. Faster dimension reduction [ J ]. Communi- cations of the ACM,2010,53(2) :97-104. 被引量:1
  • 10KE Qi-fa,KANADE T. Robust L1 norm factorization in the psence of outliers and missing data by alternative convex programming[ C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004:739-746. 被引量:1

共引文献79

同被引文献35

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部