期刊文献+

基于MPE局部保持投影与ELM的螺旋锥齿轮故障诊断 被引量:11

Fault diagnosis of spiral bevel gear based on MPE localitypreserving projections and ELM
下载PDF
导出
摘要 针对工业工程各领域广泛应用的螺旋锥齿轮振动信号受环境噪声干扰大,出现故障时信号呈现非线性、非平稳特性,故障特征信息微弱,故障特征提取难、诊断效率低的难题,提出一种基于多尺度排列熵(multi-scale permutation entropy,MPE)-局部保持投影(locality preserving projections,LPP)与极限学习机(extreme learning machine,ELM)的螺旋锥齿轮状态识别方法。首先,构造MPE作为原始高维特征矢量;然后使用LPP对原始高维特征矢量降维,获得最优低维敏感特征矢量,挖掘并保留高维特征矢量的非线性结构特点;最后将所得敏感特征量输入ELM进行识别诊断。该方法应用于3种转速下4种故障状态螺旋锥齿轮的诊断中,并与基于MPE-PCA-ELM与MPE-ELM进行对比识别,结果有效地证明了方法的准确性和优越性。 For spiral bevel gears widely used in various fields of industrial engineering, the vibration signal is greatly disturbed by environmental noise. When the fault occurs, the signal exhibits nonlinear, non-stationary characteristics, the fault feature information is weak, the fault feature extraction is difficult, and the diagnostic efficiency is low. Therefore, a spiral bevel gear state recognition method based on MPE-LPP and ELM is proposed. Firstly, construct multi-scale entropy values as the original high-dimensional feature vectors, then use LPP to obtain the optimal low-dimensional sensitive feature vectors by reducing the original high-dimensional feature vectors, which can mine and preserve the nonlinear structural features of the original high-dimensional features. The obtained sensitive feature quantity is input into the ELM for recognition diagnosis. The method is applied to the diagnosis of four kinds of fault state spiral bevel gears under three kinds of speeds, and compared with MPE-PCA-ELM and MPE-ELM. The results prove the accuracy and superiority of the proposed method.
作者 谭鸿创 杨大炼 蒋玲莉 李学军 Tan Hongchuang;Yang Dalian;Jiang Lingli;Li Xuejun(Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and Technology,Xiangtan 411201,China;Foshan University,Mechanical and Electrical Engineering,Foshan 528225,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期44-52,共9页 Journal of Electronic Measurement and Instrumentation
基金 国家自然科学基金(11872022,51575177) 湖南省科技厅“科技人才专项-湖湘青年英才”项目(2017RS3049) 湖南省自然科学基金(11702091)资助项目。
关键词 螺旋锥齿轮 故障诊断 MPE LPP ELM spiral bevel gears fault diagnosis MPE LPP ELM
  • 相关文献

参考文献11

二级参考文献97

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2范虹,孟庆丰,张优云,冯武卫.基于滤波器组和高阶累积量的信号特征检测[J].振动与冲击,2007,26(2):29-32. 被引量:4
  • 3Zhao Zhen,Jia Mingxing,Wang Full, et at. Intermit- tent Chaos and Sliding Window Symbol Sequence Statistics-based Early Fault Diagnosis for Hydraulic Pump on Hydraulic Tube Tester[J]. Mechanical Systems and Signal Processing, 2009, 23: 1573- 1585. 被引量:1
  • 4Costa M, Goldberger A L, Peng C K. Multi-scale Entropy Analysis of Biological Signals[J]. Physical Review E,2005,71 : 1-18. 被引量:1
  • 5Bandt C, Pompe B. Permutation Entropy: a Natural Complexity Measure for Time Series [J]. Physical Review Letters, the American Physiological Society, 2002,88(17) : 1741021-1741024. 被引量:1
  • 6Yan Ruqiang, Liu Yongbin, Gao R X. Permutation Entropy:a Nonlinear Statistical Measure for Status Characterization of Rotary Machines[J]. Mechanical Systems and Signal Processing,2012,29:474-484. 被引量:1
  • 7Li Duan, Li Xiaoli, Liang Zhenhu, et al. Multiscale Permutation Entropy Analysis of EEG Recordings during Sevoflurance Anesthesia[J]. Journal of Neu- ral Engineering, 2010,7 (4) : 1088-1093. 被引量:1
  • 8Ouyang Gaoxiang, Li Jing, Liu Xianzeng. Dynamic Characteristics of Absence EEG Recordings with Multiscale Permutation Entropy Analysis [J]. Epi- lepsy Research, 2013,104 : 246-252. 被引量:1
  • 9刘永斌,龙潜,冯志华,刘维来.一种非平稳、非线性振动信号检测方法的研究[J].振动与冲击,2007,26(12):131-134. 被引量:37
  • 10HE X F, NIYOGI P. Locality preserving projections[C]//Neural Information Processing Systemsl6. Vancouver: MIT Press, 2004 153-160. 被引量:1

共引文献193

同被引文献105

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部