摘要
针对序列图像中的运动目标在跟踪过程中发生运动模糊以及部分遮挡的问题进行了研究,提出一种将改进的颜色直方图特征模型与尺度不变特征(SIFT)模型相融合的粒子滤波跟踪算法。采用基于模糊逻辑的方法,根据当前跟踪环境自适应调节两种特征信息的权重,从而实现特征信息间的融合,提高描述目标观测的可靠性。实验结果证明,该算法优于传统的单特征或采用固定权值的多特征目标跟踪算法。
In order to solve the problem of motion blur and partial occlusion during the object tracking in the sequence images, this paper proposed a particle filter tracking method based on the improved color histogram model and the scale invariant feature transform (SIFT) model. According to the track environment, it adaptively allocated the weights of the two types of target information by using fuzzy logic method, thus improved the reliability of target observation description by feature fusion. Experimental results show that the proposed method is superior to the traditional methods which is based on only one feature or fixed weight.
出处
《计算机应用研究》
CSCD
北大核心
2013年第11期3506-3509,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(50605007)
福建省高等学校新世纪优秀人才支持计划资助项目(XSJRC2007-07)
关键词
粒子滤波
颜色直方图
尺度不变特征
自适应融合
目标跟踪
particles filter color histogram scale invariant feature adaptive fusion object tracking