期刊文献+

Phase Correlation Based Iris Image Registration Model 被引量:3

Phase correlation based iris image registration model
原文传递
导出
摘要 Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy. Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance. Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy. Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2005年第3期419-425,共7页 计算机科学技术学报(英文版)
基金 国家自然科学基金
关键词 phase correlation image registration iris recognition BIOMETRICS phase correlation image registration iris recognition biometrics
  • 相关文献

参考文献20

  • 1Daugman J G.Statistical richness of visual phase information:Update on recognizing persons by iris patterns.International Journal of Computer Vision,2001,45(1):25-38. 被引量:1
  • 2Daugman J G.The importance of being random:Statistical principles of iris recognition.Pattern Recognition,2003,36(2):279-291. 被引量:1
  • 3Daugman J G.High confidence visual recognition of persons by a test of statistical independence.IEEE Trans.Pattern Analysis and Machine Intelligence,1993,15(11):1148-1161. 被引量:1
  • 4Zhang D.Automated Biometrics:Technologies and Systems.Norwell,MA:Kluwer,2000. 被引量:1
  • 5Jain A K,Bolle R M,Pankanti S(eds.).Biometrics: Personal Identification in a Networked Society.Norwell,MA:Kluwer,1999. 被引量:1
  • 6Mansfield T,Kelly G,Chandler D,Kane J.Biometric product testing final report.Issue 1.0,National Physical Laboratory of UK,2001. 被引量:1
  • 7Wildes R P,Asmuth J C et al.A machine-vision system for iris recognition.Machine Vision and Applications,1996,9:1-8. 被引量:1
  • 8Wildes R P.Iris recognition:An emerging biometric technology.In Proc.the IEEE,Sept.1997,85:1348-1363. 被引量:1
  • 9Ma L,Wang Y,Tan T.Iris recognition based on multichannel gabor filtering.In Proc.Asian Conference on Computer Vision,2002,I:279-283. 被引量:1
  • 10Ma L,Wang Y,Tan T.Iris recognition using circular symmetric filters. In Proc.International Conference on Pattern Recognition, 2002,Ⅱ:414-417. 被引量:1

同被引文献18

  • 1王海南,郝重阳,雷方元,张先勇.非刚性医学图像配准研究综述[J].计算机工程与应用,2005,41(11):180-184. 被引量:24
  • 2丁雪梅,王维雅,黄向东.基于差分和特征不变量的运动目标检测与跟踪[J].光学精密工程,2007,15(4):570-576. 被引量:30
  • 3Radke R J, Andra S, Al-kofahl O. Image change detection algorithms: a systematic survey [ J ]. IEEE Trans. on Image Processing, 2005, 14(3) : 1 -14. 被引量:1
  • 4Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [ C ]//Proceedings CVPR, 1999, 246 - 252. 被引量:1
  • 5Hayman E, Eklundh J. Statistical background subtraction for a mobile observer [ C ]//Proceedings ICCV, 2003,789 - 796. 被引量:1
  • 6Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences [ J ]. IEEE Trans. on Image Processing, 2011, 20 ( 6 ) : 1709 - 1724. 被引量:1
  • 7Baker S, Matthews L. Lucas-kanade 20 years on: a unifying framework [ J ]. International Journal of Computer Vision, 2004, 56(3) : 221 -255. 被引量:1
  • 8Gruen A W. Adaptive least squares correlation a powerful image matching technique [ J ]. Remote Sensing and Cartography, 1985, 14 (3): 175- 187. 被引量:1
  • 9David G, Low E. Distinctive image features from scale-invariant key points [ J ]. International Journal of Computer Vision, 2004, 60(3) - 91 -110. 被引量:1
  • 10Ackermann F. Digital image correlation: performance and potential application in photogrammetry [J]. Remote Sensing and Cartography, 1984, 12 (1):273-282. 被引量:1

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部