期刊文献+

Image Registration Based on Improved Mutual Information with Hybrid Optimizer 被引量:3

Image Registration Based on Improved Mutual Information with Hybrid Optimizer
下载PDF
导出
摘要 An improved image registration method is proposed based on mutual infor- mation with hybrid optimizer. Firstly, mutual information measure is combined with morphological gradient information. The essence of the gradient information is that locations a large gradient magnitude should be aligned, but also the orientation of the gradients at those locations should be similar. Secondly, a hybrid optimizer combined PSO with Powell algorithm is proposed to restrain local maxima of mutual information function and improve the registration accuracy to sub-pixel level. Lastly, muhlresolution data structure based on Mallat decomposition can not only improve the behavior of registration function, but also improve the speed of the algorithm. Experimental results demonstrate that the new method can yield good registration result, superior to traditional optimizer with respect to smoothness and attraction basin as well as convergence speed. An improved image registration method is proposed based on mutual information with hybrid optimizer. Firstly, mutual information measure is combined with morphological gradient information. The essence of the gradient information is that locations with a large gradient magnitude should be aligned, but also the orientation of the gradients at those locations should be similar. Secondly, a hybrid optimizer combined PSO with Powell algorithm is proposed to restrain local maxima of mutual information function and improve the registration accuracy to sub-pixel level. Lastly, multiresolution data structure based on Mallat decomposition can not only improve the behavior of registration function, but also improve the speed of the algorithm. Experimental results demonstrate that the new method can yield good registration result, superior to traditional optimizer with respect to smoothness and attraction basin as well as convergence speed.
作者 TANG Min
出处 《Chinese Journal of Biomedical Engineering(English Edition)》 2008年第1期18-25,共8页 中国生物医学工程学报(英文版)
关键词 image registration mutual information muhiresolution data structure particle swarm optimization powell algorithm 最优化设计 图象处理 交互信息 计算机技术
  • 相关文献

参考文献7

二级参考文献74

  • 1梁玮,鲍旭东,罗立民.基于互信息的2D-3D医学图像配准[J].生物医学工程研究,2004,23(1):14-16. 被引量:11
  • 2杨伦标 高英仪.模糊数学-原理及应用[M].广州:华南理工大学出版社,.. 被引量:1
  • 3[美]W.H.Press S.A.Teukolsky et al.著.傅祖芸 丁岩等译.C语言数值算法程序大全(第二版)[M].北京:电子工业出版社,1995.. 被引量:1
  • 4[2]Josien P,Maintz J B,Viergever M.Image registration by maximization of combined mutual information and gradient information[J].IEEETransactions on Medical imaging,2000,19(8):809-814. 被引量:1
  • 5[3]Changchun Liu,Ke Li,Zhongguo Liu.Medical image registration by maximization of combined mutual information and edge correlative deviation[A].In Proceedings of 27th Annual International Conference of the IEEE EMBS,[C].Shanghai:2005.1131-1134. 被引量:1
  • 6[5]Robert M,Haralick,Stanley R,et al.Image anaysis using mathematical morphology[J].IEEE Transactions PAMI,1987,9(4):532-549. 被引量:1
  • 7[7]West J.Comparison and evalution of retrospective intermodality image registration technique[J].Medical Imaging:Image Processing,1996,2710:332-347. 被引量:1
  • 8唐焕文 秦学志.实用最优化方法(第2版)[M].大连理工大学出版社,2001.144. 被引量:1
  • 9Van den PA, Evert Jan D Pol, Viergever MA. Medical image matching. a review with classification. Proc IEEE Engineering in Medicine and Biology, 1993. 26.?A?A?A?A 被引量:1
  • 10Holden M, Denton DJG, et al. Voxel similarity measure for 3-D serial MR brain image registration. Proc IEEE Transactions on Medical Imaging, 2000, 19 (2): 94 - 102. 被引量:1

共引文献88

同被引文献14

  • 1陈贵云,张江.基于三维互信息的多模医学图像配准[J].时珍国医国药,2010,21(12):3321-3322. 被引量:1
  • 2冯林,管慧娟,滕弘飞.基于互信息的医学图像配准技术研究进展[J].生物医学工程学杂志,2005,22(5):1078-1081. 被引量:19
  • 3Maintzjb A,Viergeverv M.A Survey of Medical Image registration[J].Medical Image Analysis,1998,2(1):1-37. 被引量:1
  • 4Van Den Elsen P A,Pol E-J D,Viergever M A.Medical image matching:A review with classification[J].IEEE Transactions on Biomedical Engineering,1993,16(3):26-39. 被引量:1
  • 5Nikhil R P,Sankar K P.A review of image segmentation techniques[J].Pattern Recognition,1993,26(9):1277-1294. 被引量:1
  • 6Schafer S,Mcphail T,Warren J.Image deformation using mo-ving least squares[J].ACM Transactions on Graphics,2006,25(3):533-540. 被引量:1
  • 7Pringce L,Xu C.A new external force model for snakes[C] ∥Image and Multidimensional Signal Processing Workshop.1996:30-31. 被引量:1
  • 8Aminia T S,Weymouth E.Using dynamic programming for mini-mizing the energy of active contours in the presence of hard constraints[C] ∥Second International Conference on Computer Vision.1998:95-99. 被引量:1
  • 9Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 10苏瑜,苏敏,刘丽.基于最大互信息的分层图像配准方法[J].攀枝花学院学报,2007,24(6):50-54. 被引量:2

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部