期刊文献+

基于三维在线表观模型的粒子滤波目标跟踪算法 被引量:5

Particle filter target tracking based on three-dimensional on-line appearance model
原文传递
导出
摘要 提出的基于三维在线表观模型的粒子滤波目标跟踪算法,以目标的独立特征为基础,分别从空域和时域对目标进行描述,构建目标的三维表观模型,并通过多重线性空间理论表达目标表观随时间推移引起的变化,实现模型的在线增量更新。采用粒子滤波方法,对每个独立线索分别进行在线权重估计,通过多线索的融合实现动目标的稳定跟踪。三维在线表观模型和在线跟踪机制使跟踪模型对目标与背景的在线区分能力得到进一步增强,保证了算法在目标表观变化时的跟踪稳定性。通过多种目标表观复杂变化的场景验证,均取得了良好跟踪效果。 In actual particle filter tracking, the appearance change of objects tends to be very changeful. To address this problem, an adaptive object tracking algorithm based on three-dimensional on-line appear- ance model is presented. It describes objects by spatial and temporal domains and constructs object's three-dimensional appearance model. Indicating object appearance changes over time by multiple linear space elements, it implements the on-line incremental update of models. Based on the tracking mechanism of particle filter, it estimates and weights each individual element cue online and tracks real-time adaptive moving targets. Three-dimensional online appearance model and online tracking mechanism make the dis- tinguish ability improved between the object and background. Therefore, it ensures the stability of the tracking algorithm when the object appearance changes. Experimental results show that the proposed tracking method could accurately track the moving object on a variety of challenging sequences, and it demonstrates better stability compared with related algorithms, while the target apperance presents vari- ous complex changes.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第9期1768-1775,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(F0111) 陕西省自然科学基金(2013JQ8023)资助项目
关键词 目标跟踪 表观模型 线索融合 在线跟踪 线性空间 object tracking appearance model multi-cue fusion~ on-line tracking~ linear space
  • 相关文献

参考文献18

  • 1Ryan G,Paolo B,Lepage K,et al.Environmentally sensitive particl e filter tracking in multistatic AUV networks with port-starboard ambiguity[A].Proc.of 2014IEEE International Con ference on Acoustic,Speech and Signal Processing (ICASSP),2014,2-1476. 被引量:1
  • 2Ho J, Lee K C, Yang M H, et al.Visual tracking using learned linear subspaces[A].Proc.of IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].2004,782-789. 被引量:1
  • 3Lee K C,Kriegman D.Online learning of probabilistic appearance manifolds for video-based recognition and tracking[A].Proc. of IEEE Conference on Computer Vision and Pattern R ecognition(CVPR)[C].2012,852-859. 被引量:1
  • 4Ross D,Lim J,Lin R S,et al.Incremental learning for robust visu al tracking[J].International Journal of Computer Vision,2014,77(1-3):125-141. 被引量:1
  • 5Lathauwer L,Moor B,Vandewalle J.A multilinear singular value de composition.SIAM[J].Journal on Matrix Analysis and Applications,2000,21(4):1253-1278. 被引量:1
  • 6Li X,Hu W,Zhang Z,et al.Visual tracking via incremental Log-Eu clidean Riemannian sub-space learning[A].Proc.of IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C] .2013,578-585. 被引量:1
  • 7Li X,Hu W,Zhang Z,et al.Robust visual tracking based on increme ntal tensor subspace learning[A].Proc.of IEEE International Conference on Computer Vision[C].2012,1008-1016. 被引量:1
  • 8Birchfield S.Elliptical head tracking using intensity gradients and color histograms[A].Procof IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].2011,232-237. 被引量:1
  • 9Triesch J, Malsburg C.Democratic integration:Self-or-ganized in tegration of adaptive cues[J].Neural Computation,2012,13(9):2049-2074. 被引量:1
  • 10Nickels K,Hutchinson S.Estimating uncertainty in SSD-based feature tracking[J].Image Vision Computing, 2013,20(1):47-58. 被引量:1

二级参考文献40

  • 1Kotecha J h,Djuric P M. Guassian particle filter[J]. IEEE Trans. On Signal Processing [J]. 2003, 51 (10) : 2593- 2602. 被引量:1
  • 2Kotecha J h,Djuric P M. Guassian sum particle filter[J]. IEEE Trans. on Signal Processing, 2003,51 (10) : 2602- 2611. 被引量:1
  • 3Kamel H, Badawy W. Fuzzy-logic-based particle filter for tracking a maneuverable target[A]. Proc. of Midwest Symp. CIRCUIT Systems[C]. 2005,1537-1540. 被引量:1
  • 4Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Compu-ting,2003,21(1):99-110,. 被引量:1
  • 5Brasnett P,Mihayhova L, Bull D. Sequential monte carlo tracking by fusing multiple cues in video sequences[J]. Image Vision Computing, 2007,25(8) : 1217-1227. 被引量:1
  • 6Serby D,Koller-Meier E,Van Gool L, Probabilitic object tracking using multiple features[A]. Proce. of 17th Inter- national Conference on Pattern Recognition[C]. Cam- bridge,UK, 2004,184-187. 被引量:1
  • 7Ojala T, Pietikinen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with lo- cal binary patter[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24 (7) : 971-987. 被引量:1
  • 8YUAN Guo-wu, GAO Yun,XU Dan. A moving object track- ing method based on a combination of local binary pattern texture and hue[J]. Procedia Engineering, 2011, 15: 3964-3968. 被引量:1
  • 9Nazari S,Moin MS. Face recognition using global and lo- cal Gabor features[A]. Proc. of Electrical Engineering (ICEE), 2013,21st,Iranian Conference on[C]. 2013,1-4. 被引量:1
  • 10Comaniciu D, Ramesh V. Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 200,3,25( 5 ) : 564-577. 被引量:1

共引文献37

同被引文献56

  • 1Yang H Shao L, Zheng F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing,2011,74(18):3823-3831. 被引量:1
  • 2Ross DoLim J,Lin R S.et al. Incremental learning for ro- bust visual tracking[J]. International Journal of Computer Vision, 2008.77(3) : 125-1.11. 被引量:1
  • 3Zhang L, van der Maaten L J P. Preserving structure in model-free tracking[J]. IEEE Transactions on Pattern A-nalysis and Machine Intelligence, 2014,36(4) : 756-769. 被引量:1
  • 4Poling B, Lerman G, Szlam. A better feature tracking through linear subspace constraints[A]. Prec. of 2014 IEEE Conference on Computer Vision and Pattern Recog- nition (CVPR) [C]. 2014,3454-3461. 被引量:1
  • 5Jang S,Choi K,Toh K,et al. Object tracking based on an online learning network with total error rate minimization [J]. Pattern Recognition,2015,48(1) :126-139. 被引量:1
  • 6Boardman D, Flynn A. A gamma-ray identification algori- thm based on fisher linear discriminant analysis[J]. IEEE Transactions on Nuclear Science, 2013,60 ( 1 ) .. 270-277. 被引量:1
  • 7Wright J,Yang A Y,Ganesh A,et al. Robust face recogni- tion via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,31 (2) : 210-227. 被引量:1
  • 8WANG Qing,CHEN Feng,XU Wen-li,et al. Online discr- iminative object tracking with local sparse representation [J]. IEEE Workshop on the Applications of Computer Vi- sion,2012,12(4) :425-432. 被引量:1
  • 9CHEN Feng, WANG Qing, WANG Song, et al. Object tracking via appearance modeling and sparse representa- tion[J]. Image and Vision Computing., 2013, 29 ( 11 ) : 787-796. 被引量:1
  • 10Rosipal R, Kramer N. Overview and recent advances in partial least squares [J]. Latent Structure and Feature Selection, 2010,18 (3), 34-51,. 被引量:1

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部