期刊文献+

稀疏表示的超像素在线跟踪 被引量:5

Online Tracking via Superpixel and Sparse Representation
下载PDF
导出
摘要 目标表观变化的处理是视觉跟踪领域极具挑战性的问题,该文针对这一问题,在粒子滤波框架下提出一种高效的基于超像素的L1跟踪方法(SuperPixel-L1 tracker,SPL1)。首先利用具有结构性信息的中层视觉线索(超像素)构造字典来对目标的表观建模;然后求解由粒子表示的候选目标状态的L1范数最小化,把重构误差最小的候选状态作为跟踪的结果;最后进一步改进了字典的在线更新策略,不论目标发生遮挡与否,字典都被学习更新;为了降低目标发生漂移的可能,更新时保留初始帧的信息。仿真结果验证了SPL1在目标发生长时间遮挡、尺度和光照变化时依然能够稳定地跟踪目标。 Handling appearance variations is a very challenging issue for visual tracking. In this paper, an effective superpixel based L1 tracking method (SuperPixel-L1 tracker, SPL1) is proposed to deal with the above problem in a particle filter framework. First, the mid-level visual cue with structural information is exploited to construct the dictionary and model the object appearance. Then each candidate state defined by a particle is solved via L1 minimization. The candidate with the smallest reconstruction error is selected as the tracking result. Finally, the online dictionary updating strategy is further improved. The dictionary needs to be updated regardless of whether the object is occluded or not. The initial frame information is retained during the updating process to reduce the possibility of the object drift. Simulation results show that SPL1 tracker can still stably track the object under the circumstance of long-term occlusion, large scale and illumination changes.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第10期2393-2399,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60971098 61201345) 现代信息科学与网络技术北京市重点实验室开放课题(XDXX1308)资助课题
关键词 视觉跟踪 在线学习 表观变化 稀疏表示 超像素 Visual tracking Online learning Appearance changes Sparse representation Superpixel
  • 相关文献

参考文献18

  • 1Yilmaz A, Javed O, and Shah M. Object tracking: a survey[J]. A CM Computing Surveys, 2006, 38(4): 1-45. 被引量:1
  • 2Zhang S, Yao H, Sun X, et al.. Sparse coding based visual tracking: review and experimental comparison[J]. Pattern Recognition, 2013, 46(7): 1772-1788. 被引量:1
  • 3Cheng X, Li N, Zhang S, et al.. Robust visual tracking with SIFT features and fragments based on particle swarm optimization[J]. Circuits, Systems, and Signal Processing, 2014, 33(5):1507-1526. 被引量:1
  • 4Adam A, Rivlin E, and Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 798-805. 被引量:1
  • 5Kwon J and Lee K. Visual tracking decomposition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1269-1276. 被引量:1
  • 6Ross D, Lim J, Lin R, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141. 被引量:1
  • 7Babenko B, Yang M, and Belongie S. Visual tracking with online multiple instance learning[C]. CVPR 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami FL, USA, 2009: 983-990. 被引量:1
  • 8Wang S, Lu H, Yang F, et al.. Superpixel tracking[C]. Proceedings of International Conference on Computer Vision, Barcelona, Spain, 2011: 1323-1330. 被引量:1
  • 9Kalal Z, Mikolajczyk K, and Matas J Tracking-learning- detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. 被引量:1
  • 10Mei X and Ling H. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. 被引量:1

同被引文献66

  • 1高俊祥,田彦,刘勇.智能交通系统中的椭球法运动阴影检测[J].光电子.激光,2009,20(10):1348-1352. 被引量:2
  • 2刘勃,魏铭旭,周荷琴.混合交通环境中的阴影检测算法[J].信号处理,2005,21(2):172-177. 被引量:8
  • 3Mei Xiao,Chong-Zhao Han,Lei Zhang.Moving Shadow Detection and Removal for Traffic Sequences[J].International Journal of Automation and computing,2007,4(1):38-46. 被引量:12
  • 4ZHANG S, YAO H, SUN X, et al. Sparse coding based visual tracking: review and experimental comparison [J]. Pattern Recognition, 2013, 46(7): 1772-1788. 被引量:1
  • 5WU Y, LIM J, YANG M H. Online object tracking: a benchmark [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2411-2418. 被引量:1
  • 6ISARD M, BLACK A. Condensation-conditional density propagation for visual tracking [J]. International Journal on Computer Vision, 1998, 29(1): 5-28. 被引量:1
  • 7COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 8FOUAD B, LYNDA D, SNOUSSI H. Improved mean shift integrating texture and color features for robust real time object tracking [J]. The Visual Computer, 2013, 29(3): 155-170. 被引量:1
  • 9AVIDAN S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072. 被引量:1
  • 10ZHANG K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411. 被引量:1

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部