期刊文献+

L1范数最大化主分量分析视觉跟踪 被引量:3

Visual Tracking via L_1-Norm Maximization Principal Component Analysis
下载PDF
导出
摘要 针对基于L2范数的主分量分析(L2-PCA)易受离群数据的影响,使得传统的基于L2-PCA的视觉跟踪对目标遮挡的鲁棒性较差的问题,提出一种基于L1范数最大化主分量分析(PCA-L1)的视觉跟踪算法.利用PCA-L1对目标表观建模,以粒子滤波为框架估计目标的状态;为了适应目标变化并克服"模型漂移"问题,提出一种PCA-L1的在线更新方法以实现子空间的更新.通过实验验证并与现有算法进行了比较的结果表明,文中算法具有较优的跟踪性能. The principal component analysis based on L2-norm (L2-PCA) is sensitive to outliers, which result in the visual tracking algorithms based on L2-PCA having lower robustness to occlusions. To alleviate this problem, a novel visual tracking algorithm via Ll-norm maximization principal component analysis (PCA-L1) is proposed in this paper. The proposed algorithm models the object appearance using PCA-L1 , and infers the states of object with particle filter. In addition, to adapt to changes of object appearance and avoid model drifting, an online PCA-L1 update method is proposed. The experimental results on several challenging sequences show that the proposed algorithm has better performance than that of the state-of-the-art tracker.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第9期1392-1398,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61175035)
关键词 视觉跟踪 L1范数主分量分析 模板更新 粒子滤波 visual tracking L1-norm principal component analysis model update particle filter
  • 相关文献

参考文献2

二级参考文献31

  • 1常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 2M J Black,A D Jepson.Eigentracking:robust matching and tracking of articulated objects using a view based representation[J].International Journal of Computer Vision (IJCV),1998,26(1):63-84. 被引量:1
  • 3M Turk,A Pentland.Face recognition using eigenfaces[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Lahaina,Maui,Hawaii,USA,June 3-6,1991.586-591. 被引量:1
  • 4D Comaniciu,V Ramesh,P Meer.Real-time tracking of nonrigid objects using mean shift[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Hilton Head Island,South Carolina,June 13-15,2000,2:142-149. 被引量:1
  • 5A Levy,M Lindenbaum.Sequential Karhunen-Loeve basis extraction and its application to images[J].IEEE Transactions on Image Processing,2000,9(8):1371 -1374. 被引量:1
  • 6J Lim,D Ross,R S Lin,M H Yang.Incremental learning forvisual tracking[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada:the MIT Press,December 5-8,2004,793-800. 被引量:1
  • 7D Ross,J Lim,R S Lin,M H Yang.Incremental learning for robust visual tracking[J].International Journal of Computer vision (IJCV),2008,77(1-3):125-141. 被引量:1
  • 8R S Lin,D Ross,J Lim,M H Yang.Adaptive discriminative generative model and its applications[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada,the MIT Press,December 13-18,2004,801-808. 被引量:1
  • 9M A O Vasilescu,D Terzopoulos.Multilinear subspace analysis for image ensembles[A].Proceedings of IEEE Conference on Computer Vision and Patten Recognition (CVPR)[C].Madison,Wisconsin,June 16-22,2003,2:93-99. 被引量:1
  • 10Li X,Hu W M,Zhang Z F et al.Robust visual tracking based on incremental tensor subspace learning[A].Proceedings of International Conference on Computer Vision (ICCV)[C].Rio de Janeiro,Brazil,October 14-20,2007,1-8. 被引量:1

共引文献17

同被引文献43

  • 1David A Ross, Lim Jongwoo, Lin Ruei-Sung, et al Incremental learning for robust visual tracking[J] International Journal of Computer Vision, 2008, 77(1-3) 125-141. 被引量:1
  • 2Scholkopf B, Smola A, Mulle K R r. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Comput, 1998, 10(5): 1299-1319. 被引量:1
  • 3Xue Mei, Ling HaiBin. Robust Visual Tracking Using L1 Minimization[C]//Proe of IEEE International Conference on Computer Vision, Kyoto, Japan: IEEE Press, 2009: 1436-1443. 被引量:1
  • 4Kwak N. Principal component analysis based on Ll-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1672-1680. 被引量:1
  • 5Xue Mei, Ling HaiBin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. 被引量:1
  • 6Xue M, Ling H B, Wu Y, et al. Minimum error bounded efficient zltracker with occlusion detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2011: 1257-1264. 被引量:1
  • 7Wang Dong, Lu Huchuan, Yang Minghsuan. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013 22(9): 314-326. 被引量:1
  • 8Tseng P. On accelerated proximal gradient methods for convex-concave optimization[J]. SIAM J on Opti, 2008, 1120-11128. 被引量:1
  • 9Shen Zuowei, Toh Kim-Chuan, Yun Sangwoon. An accelerated proximal gradient algorithm for frame based image restorations via the balanced approach[J]. SIAM J. Imaging Sciences, 2011(4): 573-596. 被引量:1
  • 10Kristan M, Pers J, Kovacic S, et al tic model for visual tracking [ J ]. (9) :2160-2168. A local-motion-based probabilis- Pattern Recognition, 2009,42. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部