期刊文献+

基于增量张量子空间学习的自适应目标跟踪 被引量:7

Adaptive Object Tracking with Incremental Tensor Subspace Learning
下载PDF
导出
摘要 传统的基于子空间的跟踪方法易于丢失图像所固有的部分结构和邻域信息,从而降低了目标匹配和跟踪的精度.为此,本文提出了一种增量张量子空间学习算法,用于跟踪目标的建模与模型更新.同时,将该模型与贝叶斯推理相结合,提出一种自适应目标跟踪算法:新方法首先对跟踪目标的外观进行建模,然后利用贝叶斯推理获得目标外观状态参数的最优估计,最后利用最优估计的目标观测更新目标张量子空间.实验结果表明,由于保持了目标外观的结构信息,本文提出的自适应目标跟踪方法具有较强的鲁棒性,在跟踪目标在姿态变化、短时遮挡和光照变化等情况下均可有效地跟踪目标. The conventional subspaces based tracking methods usually have low precision of object matching and tracking, because they lose the inherent partial structure and neighborhood information. In this paper, an incremental tensor subspace learning algorithm is proposed to model and update the object appearance in tensor subspace. Simultaneously, by combining the proposed learning algorithm with Bayesian inference,an adaptive object tracking method is presented. Firsfly, we represented the appearance of the object in tensor subspace; secondly, obtained the optimal estimation of the state parameters by Bayesian inference;finally up- dated the tensor subspace by using the optimal observation.Due to the construction information is maintained,the proposed method is able to track targets effectively and robustly under pose variation, short-rime occlusion and large lighting and so on in the experiments.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第7期1618-1623,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60702061) 教育部长江学者创新团队支持计划(No.IRT0645) 深圳大学ATR国防科技重点实验开放基金 总装备部预研基金(No.9140A06050107DZ0113)
关键词 张量子空间 增量学习 贝叶斯推理 仿射运动 tensor subspace incremental learning bayesian inference affine motion
  • 相关文献

参考文献13

  • 1M J Black,A D Jepson.Eigentracking:robust matching and tracking of articulated objects using a view based representation[J].International Journal of Computer Vision (IJCV),1998,26(1):63-84. 被引量:1
  • 2M Turk,A Pentland.Face recognition using eigenfaces[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Lahaina,Maui,Hawaii,USA,June 3-6,1991.586-591. 被引量:1
  • 3常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 4D Comaniciu,V Ramesh,P Meer.Real-time tracking of nonrigid objects using mean shift[A].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)[C].Hilton Head Island,South Carolina,June 13-15,2000,2:142-149. 被引量:1
  • 5A Levy,M Lindenbaum.Sequential Karhunen-Loeve basis extraction and its application to images[J].IEEE Transactions on Image Processing,2000,9(8):1371 -1374. 被引量:1
  • 6J Lim,D Ross,R S Lin,M H Yang.Incremental learning forvisual tracking[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada:the MIT Press,December 5-8,2004,793-800. 被引量:1
  • 7D Ross,J Lim,R S Lin,M H Yang.Incremental learning for robust visual tracking[J].International Journal of Computer vision (IJCV),2008,77(1-3):125-141. 被引量:1
  • 8R S Lin,D Ross,J Lim,M H Yang.Adaptive discriminative generative model and its applications[A].Proceedings of Conference on Advances in Neural Information Processing Systems (NIPS)[C].Vancouver,Canada,the MIT Press,December 13-18,2004,801-808. 被引量:1
  • 9M A O Vasilescu,D Terzopoulos.Multilinear subspace analysis for image ensembles[A].Proceedings of IEEE Conference on Computer Vision and Patten Recognition (CVPR)[C].Madison,Wisconsin,June 16-22,2003,2:93-99. 被引量:1
  • 10Li X,Hu W M,Zhang Z F et al.Robust visual tracking based on incremental tensor subspace learning[A].Proceedings of International Conference on Computer Vision (ICCV)[C].Rio de Janeiro,Brazil,October 14-20,2007,1-8. 被引量:1

二级参考文献9

  • 1方帅,迟健男,徐心和.视频监控中的运动目标跟踪算法[J].控制与决策,2005,20(12):1388-1391. 被引量:16
  • 2Isard M,Blake A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28. 被引量:1
  • 3Katja N,Esther K M,Luc V G.An adaptive color-based filter[J].Image Vision Computing,2003,21 (1):99-110. 被引量:1
  • 4Perea P,Hue C,Vermaak J,Gangnet M.Color-based probabilistic tracking[A].European Conference on Computer Vision[C].Copenhagen,Denmark:Springer,2002.661-675. 被引量:1
  • 5Shan Can-feng,Wei Yu-cheng,Tan Tie-niu,Ojardias F.Real time hand tracking by combining particle filtering and mean shift[A].Sixth IEEE International Conference on Automatic Face and Gesture Recognition[C].Seoul,Korea:IEEE Computer Society,2004.669-674. 被引量:1
  • 6Arulampalam M,Maskell S,Gordon N,Clapp T.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transaction on Signal Processing,2002,50(2):174-188. 被引量:1
  • 7Zhou S K,Chellappa R,Moghaddam B.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Transaction on Image Processing,2004,13(11):1491-1506. 被引量:1
  • 8Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[A].Computer Vision and Pattern Recognition[C].Hilton Head,SC,USA:IEEE Computer Society,2000.142-149. 被引量:1
  • 9Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(5):564-577. 被引量:1

共引文献19

同被引文献193

  • 1江淑红,汪沁,张建秋,胡波.基于目标中心距离加权和图像特征识别的跟踪算法[J].电子学报,2006,34(7):1175-1180. 被引量:12
  • 2常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 3查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 4Cannons K. A review of visual tracking [Online], available: http://www.cse.yorku.ca/techreports/2008/?abstract=CSE- 2008-07, Oct 31, 2010. 被引量:1
  • 5Tu J, Tao H, Huang T. Online updating appearance generative mixture model for mean shift tracking. Lecture Notes in Computer Science. New York: Springer, 2006. 694-703. 被引量:1
  • 6Shan C, Tan T, Wei Y. Real-time hand tracking using a mean shift embedded particle filter. Pattern Recognition, 2007, 40(7): 1958-1970. 被引量:1
  • 7Wang X, Wang S, Ma J. An improved particle filter for target tracking in sensor systems. Sensors, 2007, 7(1): 144-156. 被引量:1
  • 8Wang T, Gu I, Backhouse A, Shi P. Face tracking using Rao- Blackwellized particle filter and pose-dependent probabilistic PCA. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE, 2008. 853-856. 被引量:1
  • 9Silveira G, Malis E. Real-time visual tracking under arbitrary illumination changes. In: Proceedings of the IEEE Conference on Computer Vision and Patter Recognition. Minneapolis, USA: IEEE, 2007. 1-6. 被引量:1
  • 10Buenaposada J, Munoz E, Baumela L. Efficient illumination independent appearance-based face tracking. Image and Vision Computing, 2009, 27(5): 560-578. 被引量:1

引证文献7

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部