期刊文献+

适用于目标跟踪的加权增量子空间学习算法 被引量:1

Weighted incremental subspace learning algorithm suitable for object tracking
下载PDF
导出
摘要 为了克服目标物外观变化给跟踪造成的困难,提出一种基于加权增量子空间学习的目标跟踪算法.该算法构造了一个可在线更新的子空间作为视频中目标物的外观模型,根据概率转移模型预测得到一组图像样本作为目标物在当前帧中可能出现的图像区域;然后将图像样本投影到该低维子空间中估计每个图像样本为目标图像区域的似然度,以具有最高似然度的样本作为目标在当前帧中的图像区域,通过加权增量的方式调整子空间.实验结果表明:相比基于其他增量子空间学习的跟踪算法,该算法能够稳定、准确地对运动目标进行跟踪. An object tracking method based on weighted incremental subspace learning was proposed to overcome the difficulty in object tracking resulting from variations in appearance. The method constructs a subspace updated online to depict the appearance of the object in the video. A set of image patches are predicted based on probabilistic transformation model as candidate image regions of the object in the current frame, then these image patches are projected onto the low-dimensional subspace, and the likelihood of each image patch as the image region of the object is evaluated. The image patch with maximal likelihood is regarded as the object image region. Finally, the subspace is updated incrementally with temporal weights. Experimental results show that the method accomplishes object tracking more steadily and accurately, compared with other incremental subspace learning based object tracking methods.
作者 钱诚 张三元
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第12期2240-2246,共7页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2009CB320804) 省部产学研资助项目(2011B090400546)
关键词 目标跟踪 增量子空间学习 算子向量 时间权值 object tracking incremental subspace learning coefficient vector temporal weight
  • 相关文献

参考文献12

  • 1DRIN C, VISVANATHAN R, PETER M. Kernel- based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (5) : 564 577. 被引量:1
  • 2HANZI W, DAVID S. KNRAD S, et al. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1)): 1661-1667. 被引量:1
  • 3ZHOU H, YUAN Y, ZHANG Y, et al. Non-rigid ob- ject tracking in complex scenes [J]. Pattern Recognition Letters, 2009, 30(2): 98-102. 被引量:1
  • 4袁广林,薛模根,谢恺,姚翎.基于核函数粒子滤波和多特征自适应融合的目标跟踪[J].计算机辅助设计与图形学学报,2009,21(12):1774-1784. 被引量:12
  • 5王震宇,张可黛,吴毅,卢汉清.基于SVM和AdaBoost的红外目标跟踪[J].中国图象图形学报,2007,12(11):2052-2057. 被引量:11
  • 6ROBERT T C, LIU Y, MARIUS L. Online selection of discriminative tracking features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1631-1643. 被引量:1
  • 7IA Y. On incremental and robust subspace learning[J]. Pattern Recognition, 2004, 37(7) .. 1509 - 1518. 被引量:1
  • 8MICHAEL J B, ALI.AN D J. EigenTracking: robust matching and tracking of articulated object using a view- based representation [J]. International Journal of Com- puter Vision, 1998, 26(1) .. 63 - 84. 被引量:1
  • 9LEVY A, LINEDENBAUM M. Sequential karhunen- loeve basis extraction and its application to images [J]. IEEE Transactions on Image Processing, 2000, 9 (8):1371 -1374. 被引量:1
  • 10DANIJEL S, AIRES L. Incremental and robust learning of subspace representations [J]. Image and Vision Computing, 2008, 26(1).. 27- 38. 被引量:1

二级参考文献32

  • 1Isard M, Blake A. Condensation-conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29(1):5-28. 被引量:1
  • 2Khan Z, Balch T, Dellaert F. MCMC based particle filtering for tracking a variable number of interacting targets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819. 被引量:1
  • 3Wang Q C, Liu J L. The improved particle filter for object tracking [C]//Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, 2006: 10275- 10279. 被引量:1
  • 4Rathi Y, Vaswani N, Tannenbaum A, et al. Tracking deforming objects using particle filtering for geometric active contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1470-1475. 被引量:1
  • 5Gilks W R, Berzuini C. Following a moving target--Monte Carlo inference for dynamic Bayesian models [J]. Journal of the Royal Statistical Society: Series B, 2001, 63 (1) : 127- 146. 被引量:1
  • 6Maggio E, Cavallaro A. Hybrid particle filter and mean shift tracker with adaptive transition model [C]//Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Dalian, 2005: Ⅱ221-Ⅱ224. 被引量:1
  • 7Li P H, Zhang T W, Pece A E C. Visual contour tracking based on particle filters [J]. Image and Vision Computing, 2003, 21(1): 111-123. 被引量:1
  • 8Shen C H, Brooks M J, Hengel A V. Augmented particle filtering for efficient visual tracking [C]//Proceedings of the IEEE International Conference on Image Processing, Genova, 2005, 3: 856-859. 被引量:1
  • 9Kwok N M, Fang G, Zhou W Z. Evolutionary particle filter: re-sampling from the genetic algorithm perspective [C]//Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Singapore, 2005:2935-2940. 被引量:1
  • 10Comaniciu D, Ramesh V, Meer P. Kernel based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 2003, 25(5): 564-577. 被引量:1

共引文献21

同被引文献19

  • 1吕卓纹,王科俊,李宏宇,阎涛.融合Camshift的在线Adaboost目标跟踪算法[J].中南大学学报(自然科学版),2013,44(S2):232-238. 被引量:3
  • 2Ross D A, Lim J W, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141. 被引量:1
  • 3Bao C L, Wu Y, Linh tt B, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837. 被引量:1
  • 4MeI X and Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272. 被引量:1
  • 5Babenko B, Yang M H, Belongie S, et al.. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. 被引量:1
  • 6Grabner H and Bischof H. On-line boosting and vision[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006, 1: 260-267. 被引量:1
  • 7Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271. 被引量:1
  • 8Yang M, Zhang C X, Wu Y W, et al.. Robust object tracking via online multiple instance metric learning[C]. Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, San Jose, 2013: 1-4. 被引量:1
  • 9Zhong Wei, Lu Hu-chuan, and Yang M. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Imaae Processina. 2014. 23(5/: 2356-2368. 被引量:1
  • 10Cruz-Mota J, Bierlaire M, and Thiran J. Sample and pixel weighting strategies for robust incremental visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5): 898-911. 被引量:1

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部