期刊文献+

基于多特征相关滤波的红外目标跟踪 被引量:6

Infrared target tracking based on multi-feature correlation filter
原文传递
导出
摘要 为实现在复杂背景和多干扰条件下红外目标的稳定跟踪,提出一种基于多特征相关滤波的红外目标跟踪算法。首先综合考虑生物视觉关注特性及目标运动特性,提取目标区域的空间特征和运动特征,进而融合一种改进的卷积特征,生成多特征权值函数;然后在传统相关滤波的基础上,引入多特征权值函数用以表征不同候选区域的重要程度,形成权值相关滤波的红外目标跟踪框架;最终得到能够表征目标位置的置信图,从而完成红外目标的鲁棒跟踪。在6组不同条件下红外视频序列上的实验结果表明,和经典目标跟踪算法相比,本文方法在复杂背景下的平均跟踪成功率提升15%左右,能够有效应对相似虚假目标、遮挡、背景辐射强度变化和探测器晃动等不良因素的影响,适用于复杂背景条件下的红外目标跟踪。 In order to realize robust tracking of infrared target in complicated background with lots of disturbed factors, this paper proposes an infrared target tracking method based on multi-feature correlation filter. Considering the visual attention mechanism and motion mechanism, the spatial feature and motion feature are extracted firstly. Then the multi-feature weighted function is generated by fusing the above two features and the improved convolution feature. Secondly,on the basis of traditional correlation filter, the tracking framework vie weighted correlation filter is presented by introducing multi-feature weighted function which could represent the importances of different candidate regions. Finally, the confidence map which indicates the best target location is computed. The experiments under 6 sequences with different conditions demonstrate that the overage increase of success rate of the proposed method has increased by about 15% compared with other traditional methods, and the proposed method is applicable to infrared target tracking under different conditions efficiently, such as similar alias target, occlusion, thermal radi- ance variation of background and detector motion.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第8期1602-1610,共9页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61102170)资助项目
关键词 红外目标跟踪 多特征融合 相关滤波 权值函数 infrared target tracking multiple features fusion correlation filter weighted function
  • 相关文献

参考文献20

  • 1Gao C,Zhang T,Li Q.Small infrared target detection using sparse ring representation[J].IEEE Transactions on Aerospace and Electronic Systems Magazine,2012,27(3): 21-30. 被引量:1
  • 2Gao C Q,Meng D Y,Yang Y,et al.Infrared Patch-Image Model for Small Target Detection in a Single Image[J].IEEE Tansactions on Image Processing,2013,22( 12):4996-5009. 被引量:1
  • 3Dong X,Huang X,Zheng Y,et al.Infrared dim and small target dete cting and tracking method inspired by human visual system[J].Infrared Physics and Technology,2014,57:100-109. 被引量:1
  • 4Deng H, Wei Y T, Tong M W.Small target detection based on weighte d self-information map[J].Infrared Physics and Technology,2013,60:197-206. 被引量:1
  • 5Li Y,Li P C,Shen Q.Real-time infrared target tracking based on l1minimization and compressive features[J].Applied Optics,2014,53(28):6518-6526. 被引量:1
  • 6Liu R M,Liu Y H.Infrared target tracking in multiple feature ps eudo-color image with kernel density estimation[J].Infrared Physics and Technology,2012,55: 505-512. 被引量:1
  • 7Li Z Z,Chen J,Gu Y S,et al.Small moving infrared space target tracking algorithm based on probabilistic data association filter[J].Infrared Physics and Technology,2014,63:84-91. 被引量:1
  • 8Liu R M,Li X L,Han L,et al.Track infrared point targets based o n projection coefficient templates and non-linear correlation combined with kalman prediction[J].Infrared Physics an d Technology,2013,57:68-75. 被引量:1
  • 9闫河,刘婕,杨德红,王朴,金炜.基于特征融合的粒子滤波目标跟踪新方法[J].光电子.激光,2014,25(10):1990-1999. 被引量:29
  • 10孙涛,曹洁,李伟,李军.具有非高斯相关噪声的目标跟踪[J].光电子.激光,2014,25(12):2393-2399. 被引量:1

二级参考文献73

  • 1闫钧华,陈少华,艾淑芳,李大雷,段贺.基于Kalman预测器的改进的CAMShift目标跟踪[J].中国惯性技术学报,2014,12(4):536-542. 被引量:29
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3孙中森,孙俊喜,宋建中,乔双.一种抗遮挡的运动目标跟踪算法[J].光学精密工程,2007,15(2):267-271. 被引量:30
  • 4Kotecha J h,Djuric P M. Guassian particle filter[J]. IEEE Trans. On Signal Processing [J]. 2003, 51 (10) : 2593- 2602. 被引量:1
  • 5Kotecha J h,Djuric P M. Guassian sum particle filter[J]. IEEE Trans. on Signal Processing, 2003,51 (10) : 2602- 2611. 被引量:1
  • 6Kamel H, Badawy W. Fuzzy-logic-based particle filter for tracking a maneuverable target[A]. Proc. of Midwest Symp. CIRCUIT Systems[C]. 2005,1537-1540. 被引量:1
  • 7Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Compu-ting,2003,21(1):99-110,. 被引量:1
  • 8Brasnett P,Mihayhova L, Bull D. Sequential monte carlo tracking by fusing multiple cues in video sequences[J]. Image Vision Computing, 2007,25(8) : 1217-1227. 被引量:1
  • 9Serby D,Koller-Meier E,Van Gool L, Probabilitic object tracking using multiple features[A]. Proce. of 17th Inter- national Conference on Pattern Recognition[C]. Cam- bridge,UK, 2004,184-187. 被引量:1
  • 10Ojala T, Pietikinen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with lo- cal binary patter[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24 (7) : 971-987. 被引量:1

共引文献46

同被引文献72

  • 1程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 2王永忠,潘泉,赵春晖,程咏梅.一种对光照变化鲁棒的均值漂移跟踪方法[J].电子与信息学报,2007,29(10):2287-2291. 被引量:5
  • 3Xie K, Fu K, Zhou T, et al. Small target detection based on accumulated center-surround difference measure[J]. Infrared Physics & Technology, 2014,67 : 229-236. 被引量:1
  • 4Li J, Gong W, Li W. et al. Robust pedestrian detection in thermal infrared imagery using the wavelet transform[J]. Infrared Physics & Technology, 2010,S3: 267-273. 被引量:1
  • 5Li Z,Chen J,Gu Y,et al. Small moving infrared space tar- get tracking algorithm based on probabilistic data associ-ation filter[J]. Infrared Physics & Technology, 2014,63 : 84-91. 被引量:1
  • 6Qi S X, Ma J, Li H. et al. Infrared small target enhance- ment via phase spectrum of Quaternion Fourier transform [J]. Infrared Physics & Technology, 2012,62 : 50-58. 被引量:1
  • 7Kim S, Yang Y, Lee J,et al. Small target detection utili- zing robust methods of the human visual system for IRST [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009,30:994-1001. 被引量:1
  • 8Kim S, Lee Y. Scale invariant small target detection by optimizing signal-to-clutter ratio in heterogeneous back- ground for infrared search and track[J]. Pattern Recogni- tion, 2012,45 : 393-406. 被引量:1
  • 9Shad X,Fan H,Lu G,et al. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system[J]. Infrared Physics & Technology, 2012,55 : 403-408. 被引量:1
  • 10Chen C L P,Li H,Wei Y,et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52 ( 1 ) : 574- 581. 被引量:1

引证文献6

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部