期刊文献+

抗复合攻击的社会网络(k,l)匿名方法 被引量:3

(k,l)-Anonymity for Social Networks Publication Against Composite Attacks
下载PDF
导出
摘要 针对社会网络发布时由于复合攻击所带来的隐私泄露问题,提出了一种(k,l)-匿名发布隐私保护方法.首先在k-同构和l-多样性的理论基础上,给出了复合攻击形式和图的(k,l)-匿名模型,并形式化地定义了一类节点具有单敏感属性的简单无向图的(k,l)-匿名问题.同时,提出了一种基于k-匿名和l-多样性的属性泛化算法来解决该匿名问题.实验结果表明:该算法能产生比已有方法更小的信息损失度,以及相当的时间开销,可有效抵御复合攻击,保护发布社会网络的隐私信息. Privacy preserving in social networks has raised serious concerns in recent years. One of the privacy disclosures is brought about through composite attacks( structural attacks and attributes attacks) by malicious users. In this paper, we consider the privacy preserving publication against composite attacks in social networks, which are expressed by simple undirected graphs. Firstly, we present a (k,l)-anonymity graph model based on the theoretical principle of k-isomorphism and the l-diversity, and then a (k,l)-anonymity problem faced the simple undirected graphs is formally defined. In addition, we propose a generalization algorithm based on k-anonymity and l-diversity to solve the problem defined above. The experimental results show that under the equal conditions, our method not only produces less information loss than that of the departed method, but also needs less time cost, which effectively resists composite attacks and preserves privacy information of the published networks.
出处 《哈尔滨理工大学学报》 CAS 2013年第3期47-53,共7页 Journal of Harbin University of Science and Technology
基金 黑龙江省自然科学基金(G200827)
关键词 社会网络 隐私保护 复合攻击 (k l)-匿名 信息损失 social networks privacy preserving composite attacks ( k, l) -anonymity information loss
  • 相关文献

参考文献15

  • 1BACKSTROM L, DWORK C, KLEINBERG J. Wherefore Art thou r3579x Anonymized Social Networks, Hidden Patterns, and Structural Steganography [ C ]//Proceedings of the 16th Interna- tional Conference on World Wide Web. ACM, 2007:181 -190. 被引量:1
  • 2ZHOU B, PEI J. The k-anonymity and 1-diversity Approaches for Privacy Preservation in Social Networks Against Neighborhood At- tacks [ J ]. Knowledge and Information Systems, 2011,28 ( 1 ) : 47 -77. 被引量:1
  • 3HAY M, MIKLAU G, JENSEN D, et al. Resisting Structural re - identification in Anonymized Social Networks [ J ]. Proceedings of the VLDB Endowment, 2008, 1 ( 1 ) : 102 - 114. 被引量:1
  • 4LIU K, TERZI- E. Towards Identity Anonymization on Graphs [ C ]//Proceedings of the 2008 ACM SIGMOD International Con- ference on Management of Data, ACM, 2008 : 93 - 106. 被引量:1
  • 5ZOU Lei, CHEN Lei, OZSU M T. K-automorphism: General Framework for Privacy Preserving Network Publication [ J ]. Pro- ceedings of the VLDB Endowment, 2009, 2( 1 ) : 946 -957. 被引量:1
  • 6CHENG J, FU A W, LIU J. K-isomorphism: Privacy Preserving Network Publication Against Structural Attacks[ C ]//Proceedings of the 2010 Intemational Conference on Management of Data, ACM, 2010:459-470. 被引量:1
  • 7WU H, ZHANG J, WANG B, et al. K^ + - Isomorphism : Privacy Preserving Publication Against Structural Attacks in Social Net- works [ J ]. International Journal of Advancements in Computing Technology, 2012,4 (22) : 154 - 162. 被引量:1
  • 8WU W, XIAO Y, WANG W, et al. k-Symmetry Model for Identi- ty Anonymization in Social Networks [ C ]//Proceedings of the 13th International Conference on Extending Database Technology, ACM, 2010:111 -122. 被引量:1
  • 9TAI C H, YU P S, YANG D N, et al. Privacy-preserving Social Network Publication Against Friendship Attacks [ C ]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011 : 1262 -1270. 被引量:1
  • 10SONG C, HAVLIN S, MAKSE H A. Self-similarity of Complex networks[ J]. Nature, 2005, 433 (7024) : 392 - 395. 被引量:1

二级参考文献8

  • 1Hay M,Miklau G,Jensen D. Resisting structural re-identification in anonyrnized social networks[J].Proceedings of the VLDB Endowment,2008,(01):102-114. 被引量:1
  • 2Backstrom L,Dwork C,Kleinberg J M. Wherefore art thou r3579x?:anonymized social networks,hidden patterns,and structural steganography[A].Piscataway:IEEE Computer Society,2007.181-190. 被引量:1
  • 3Zhou Bin,Pei Jian,Luk W-S. A brief survey on anonymization techniques for privacy preserving publishing of social network data[A].New York:acm Press,2008.12-22. 被引量:1
  • 4Liu Kun,Terzi E. Towards identity anonymization on graphs[A].New York:acm Press,2008.93-106. 被引量:1
  • 5Zhou Bin,Pei Jian. Preserving privacy in social networks against neighborhood attacks[A].Piscataway:IEEE Computer Society,2008.506-515. 被引量:1
  • 6Zou Lei,Chen Lei,0zsu M T. K-automorphism:A general framework for privacy preserving network publication[J].Proceedings of the VLDB Endowment,2008,(01):946-957. 被引量:1
  • 7Cheng J,Fu A W-C,Liu Jia. K-isomorphism:privacy preserving network publication against structural attacks[A].New York:acm Press,2010.459-470. 被引量:1
  • 8兰丽辉,鞠时光,金华.社会网络数据发布中的隐私保护研究进展[J].小型微型计算机系统,2010,31(12):2318-2323. 被引量:9

同被引文献18

  • 1Bhagat S,Cormode G,Krishnamurthy B,et al.Class-based graph anonymization for social network data[C] //Proc of the35th Int’l Conf on Very Large Databases,2009:766-777. 被引量:1
  • 2Gao J,Xu JY,Jin R,et al.Neighborhood-privacy protected shortest distance computing in cloud[C] //Proc of the ACM SIGMOD Int’l Conf on Management of Data,2011:409-420. 被引量:1
  • 3杨俊,刘向宇,杨晓春,等.基于图自同构的k-Secure社会网络隐私保护方法[C] //第29届中国数据库学术会议论文集,2012:264-271. 被引量:2
  • 4Zhelea E,Getdoor L.Preserving the privacy of sensitive relationships in graph data[C] //Proceedings of the 1st ACM SIGKDD Workshop on Privacy,Security,and Trust in KDD,2007. 被引量:1
  • 5Li J,Han J M,Luo F W,et al.K-Sensitive edge anonymity model for sensitive relationship preservation on publishing social network[C] //The 3rd International Conference on Information Technology and Computer Science,2011:146-149. 被引量:1
  • 6Zheleva E,Getoor L.Preserving the privacy of sensitive relationships in graph data[C] //Proc of the 1st ACM SIGKDD Workshop on Privacy,Security,and Trust in KDD,2007:153-171. 被引量:1
  • 7Campan A,Truta T M,Cooper N.P-sensitive K-anonymity with generalization constraints[J] .Transactions on Data Privacy Journal,2010,3(2):65-89. 被引量:1
  • 8祁瑞丽,王可,郭学涛,李金才,唐军军,刘国华.基于最大叶子子树优先策略的多敏感属性保护方法[J].燕山大学学报,2009,33(5):433-437. 被引量:3
  • 9王智慧,许俭,汪卫,施伯乐.一种基于聚类的数据匿名方法[J].软件学报,2010,21(4):680-693. 被引量:49
  • 10南丽丽,吴涛.基于信息混淆的社会网络隐私保护机制[J].计算机工程与设计,2011,32(10):3278-3283. 被引量:3

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部