期刊文献+

基于聚类的动态社交网络隐私保护方法 被引量:12

Clustering-based dynamic privacy preserving method for social networks
下载PDF
导出
摘要 由于社交网络图结构的动态变化特性,需要采用有效的动态隐私保护方法。针对现有动态数据发布隐私保护方法中存在的攻击者背景知识单一、对图结构动态变化适应性较低等问题,提出基于聚类的动态图发布隐私保护方法。分析表明,该方法能抵御多种背景知识攻击,同时对社交网络图结构动态变化具有较好的适应性。 Due to the dynamic characteristics of the social network graph structure, an effective dynamic privacy preserving method is needed. To solve the problems of the existing dynamic privacy preservation methods, such as attacker's too little background knowledge and the low adaptability to the dynamic characteristics of graph structure, a clustering-based dynamic privacy preservation method is provided. The analysis shows that the proposed method can resist many kinds of background knowledge attacks and has good adaptability to the dynamic characteristics of the social network graph structure.
出处 《通信学报》 EI CSCD 北大核心 2015年第S1期126-130,共5页 Journal on Communications
基金 国家自然科学基金资助项目(61173017) 工业和信息化部通信软科学基金资助项目(2014-R-42 2015-R-29) 信息网络安全公安部重点实验室开放课题基金资助项目(C14613)~~
关键词 动态社交网络 隐私保护 聚类 信息损失度 隐匿率 dynamic social networks privacy preserving clustering information loss degree anonymization rate
  • 相关文献

参考文献21

二级参考文献37

  • 1BACKSTROM L,DWORK C,KLEINBERG J.Wherefore art thour3579x?:anonymized social networks,hidden patterns,and structu-ral steganography[C]//Proc of the 16th International Conference onWorld Wide Web.New York:ACM Press,2007:181-190. 被引量:1
  • 2YING Xiao-wei,WU Xin-tao.Randomizing social networks:a spec-trum preserving approach[C]//Proc of SIAM International Conf-erence on Data Mining.2008:739-750. 被引量:1
  • 3VISWANATH B,MISLOVE A,GUMMADI C M,et al.On the evo-lution of user interaction in facebook[C]//Proc of the 2nd ACMWorkshop on Online Social Networks.New York:ACM Press,2009:37-42. 被引量:1
  • 4ZOU Lei,CHEN Lei,ZSU M T.K-Automorphism:a generalframework for privacy preserving network publication[J].VLDB,2009,2(1):946-957. 被引量:1
  • 5BHAGAT S,CORMODE G.Privacy in dynamic social networks[C]//Proc of WWW 2010.Raleigh,NorthCarolina:ACM Press,2010:1059-1060. 被引量:1
  • 6BHAGAT S,CORMODE G.Prediction promotes privacy in dynamicsocial networks[C]//Proc of the 3rd Conference on Online SocialNetworks.Berkeley,CA:ACM Press,2010:6. 被引量:1
  • 7CHENG J,FU A W C,LIU Jia.K-Isomorphism:privacy preservingnetwork publication against structural attacks[C]//Proc of the 2010SIGMOD International Conference on Management of Data.Indiana:ACM Press,2010:459-470. 被引量:1
  • 8ZHOU Bin,PEI Jia.Preserving privacy in social networks againstneighborhood attacks[C]//Proc of the 24th IEEE International Con-ference on Data Engineering.[S.l.]:IEEE Computer Society,2008:506-515. 被引量:1
  • 9Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008.7-15. [doi: 10.1145/1401890.1401897 ]. 被引量:1
  • 10Mislove A, Viswanath B, Gummadi KP, Drusehel P. You are who you know: Inferring user profiles in online social networks. In: Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2010.251-260. [doi: 10.1145/1718487.1718519]. 被引量:1

共引文献108

同被引文献51

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部