期刊文献+

社会网络发布中敏感边的隐私保护 被引量:5

Privacy Preservation of Sensitive Edges in Social Networks Publication
下载PDF
导出
摘要 为解决直接发布社会网络会侵害个体隐私,进而需要进行隐私保护的问题,针对拥有社会个体邻域信息作为背景知识进行敏感边识别攻击的应用场景,提出了(k,2)-匿名发布的隐私保护方法。该方法通过对原始社会网络图进行最小结构修改,实现最大的数据效用,设计实现了满足隐私保护要求的匿名发布算法,并在数据集上进行了验证。实验结果表明,该方法能有效抵御敏感边的识别攻击,获得可接受的发布质量。 Individual privacy can be breached if social networks are released directly.So privacy protection should be carried on.The privacy protection method named(k,2)-anonymity publication is proposed.The method is suitable for the scene that the aggressor with background knowledge of neighborhood information wants to identify sensitive edges in published social networks.The minimum structural modification is performed on origin social networks graphs and the largest amount of information from the published networks is obtained.Design and implement the algorithm meeting privacy preservation requirements of the published anonymously and carry on experiment on dataset to validate.Experimental results show that the method can effectively resist the sensitive edges identify attack and get acceptable release quality.
出处 《吉林大学学报(信息科学版)》 CAS 2011年第4期324-331,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60773049) 江苏大学博士创新计划基金资助项目(CX10B_006X) 吉林省教育厅"十二五"科学技术研究基金资助项目(吉教科合字[2011]第415号)
关键词 社会网络 隐私保护 敏感边 匿名发布 social networks privacy protection sensitive edges anonymous publication
  • 相关文献

参考文献20

  • 1约翰·斯科特,刘军,沈崇麟.社会网络分析法[M].2版.重庆:重庆大学出版社,2009:1-10. 被引量:1
  • 2MISLOVE A, MARCON M, KRISHNA P. Measurement and Analysis of Online Social Networks [ C ] //Proceedings of IMC' 07. New York: ACM, 2007: 29-41. 被引量:1
  • 3SWEENEY L. k-Anonymity: A Model for Protecting Privacy [ J ]. International Journal on Uncertainty, Fuzziness and Knowl- edge-Based Systems, 2002, 10 (5): 557-570. 被引量:1
  • 4韩建民,岑婷婷,虞慧群.数据表k-匿名化的微聚集算法研究[J].电子学报,2008,36(10):2021-2029. 被引量:40
  • 5杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 6L MACHANAVAJJHALA A, GEHRKE J, KIFER D, et at. 1-Diversity: Privacy beyond k-Anonymity [ J ]. ACM Transactions on Knowledge Discovery from Data, 2007, 1 (1) : 24-35. 被引量:1
  • 7LI Ning-hui, LI Tian-cheng, VENKATASUBRAMANIAN S. t-Closeness: Privacy beyond k-Anonymity and 1-Diversity [ C ] //Proceedings of the 23rd International Conference on Data Engineering. Istanbul: IEEE, 2007: 106-115. 被引量:1
  • 8HAY M, MIKLAU G, JENSEN D, et al. Anonymizing Social Networks [ R]. [ S. 1. ] : University of Massachusetts Amherst, 2007. 被引量:1
  • 9] CAMPAN A, TRUTA T M. A Clustering Approach for Data and Structural Anonymity in Social Networks [ C ] //Proceedings of the 2nd ACM SIGKDD International Workshop on Privacy, Security, and Trust in KDD. Las Vegas : ACM, 2008 : 93-104. 被引量:1
  • 10LIU K, TERZI E. Towards Identity Anonymization on Graphs [ C ] ////Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York : ACM, 2008 : 93-106. 被引量:1

二级参考文献50

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 4Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract) [A ]. Proc of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems[C]. Seattle, WA, USA: IEEE press, 1998.188. 被引量:1
  • 5Samarafi P. Protecting respondents' identities in microdata release[J]. IEEE Transactions on Knowledge and Data Engineering,2001,13(6) : 1010 - 1027. 被引量:1
  • 6Sweeney L. K-anonymity: a model for protecting privacy[J]. International Journal on Uncertainty, Fuzziness and Knowledge- Based Systems,2002,10(5) :557 - 570. 被引量:1
  • 7Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression[ J]. International Jounlal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002, 10 (5) :571 - 588. 被引量:1
  • 8Iyengar V. Transforming data to satisfy privacy constraints[A]. Proc of the 12th ACM SIGKDD Conference [C]. Edmonton, Alberta, Canada: ACM Press, 2002.279 - 288. 被引量:1
  • 9Yao C,Wang X S, Jajodia S. Checking for k-anonymity violation by views[A] .Proc of the 31st International Conference on Very Large Data Bases [C]. Trondheim, Norway: VLDB Endowment, 2005.910 - 921. 被引量:1
  • 10Machanavajjhala A, Gehrke J, Kifer D. L-diversity: privacy beyond k-anonymity[A]. Proc of the 22nd International Conference on Data Engineering[ C]. Atlanta, GA, USA: IEEE Press, 2006.24 - 36. 被引量:1

共引文献86

同被引文献48

  • 1Campan A, Truta T M. A clustering approach for data and structural anonymity in social networks[C]. In Proceedings of the 2nd ACM SIGKDD International Workshop on Privacy ,Security ,and Trust in KDD, in Conjunction with KDD'08, LasVegas, Nevada, USA, 2008:93-104. 被引量:1
  • 2Hay M, Miklau G,Jensen D, et al. Resisting structural identification in anonymized social networks[J]. In Proceedings of the 34th In-ternational Conference on Very Large Databases, ACM, 2008, 1 (1) : 102-114. 被引量:1
  • 3Liu K, Tern E. Towards identity anonyrnization on graphs[CJ . In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, ACM Press, 2008:93-106. 被引量:1
  • 4Zhou B, PeiJ. Preserving privacy in social networks against neigh- borhood attacks[C]. In Proceedings of he 24th IEEE International Conference on Data Engineering, Cancun , Mexico ,2008 : 506-515. 被引量:1
  • 5Zou L,Chen L,Ozsu T. Kvautomorphism-a general framework for privacy preserving network publication[C]. In Proceedings of VLDB Conference ,2009 :946-957. 被引量:1
  • 6Zheleva E, Getoor L. Preserving the privacy. of sen- sitive relation-ships in graph datal C]. In Proceedings of the 1st ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD, SanJose, Cali-fornia,2oo7: 153-171. 被引量:1
  • 7Lan Li-hui, Sun Ying-hui,Ju Shi-guang. Privacy pre- servation of sensitive edges in social networks publication[J].Journal ofJilin University (Information Science Edition) ,2011 ,29 (4) :324-331. 被引量:1
  • 8Ying X, Wu X. Randomizing social networks: a spectrum preserving approach[C] . In Proc of the 8 th SIAM Conference on Data Min-ing,Atlanta, USA,2oo8 :739-750. 被引量:1
  • 9Costa L F, Rodrigues FA, Travieso G, et al. Charact- erization of complex networks: a survey of measurements[J]. Advances In Physics,2oo7 ,56(167) :167-242. 被引量:1
  • 10YING X W, WU X T. On link privacy in randomizing social net- works[ C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Spring-Verlag, 2009:28-39. 被引量:1

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部