期刊文献+

动态数值敏感属性的数据隐私保护 被引量:1

Data Privacy Preservation for Dynamic Numerical Sensitive Attributes
下载PDF
导出
摘要 目前动态数据的隐私保护引起了人们的广泛关注。m-invariance概念的提出,比较好地解决了动态类别敏感属性的数据隐私保护问题,但对于动态数值敏感属性却未取得任何进展。描述了动态数值敏感属性的数据隐私保护问题,提出了解决该问题的m-increment概念及其泛化算法,并通过实验数据说明了算法的实用性和效率。 A lately privacy preservation for dynamic data has attracted great attention. The concept of m-invariance was proposed and solved the problem of data privacy preservation for dynamic categorical sensitive attributes, but it made no progress for dynamic numerical sensitive attributes. This paper analyzes the problem of data privacy preservation for dynamic numerical sensitive attributes, and then proposes the concept of m-increment and the corresponding generalization algorithm to solve the problem. Finally, the experiments demonstrate the effectiveness and efficiency of the method.
出处 《计算机科学与探索》 CSCD 2011年第8期740-750,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61003001 61033010 60973047 90818023 高等学校博士学科点专项科研基金No.2010007112003 浙江省自然科学基金No.Y1091189 王宽诚幸福基金~~
关键词 隐私保护 k-匿名:m-不变性 privacy preservation k-anonymity m-invariance
  • 相关文献

参考文献17

  • 1Sweeney L. k-anonymity: a model for protecting privacy[J] International Journal on Uncertainty, Fuzziness and Know- ledge Based Systems, 2002, 10(5): 557-570. 被引量:1
  • 2Machanavajjhala A, Kifer D, Gehrke J, et al. /-diversity: privacy beyond k-anonymity[C]//Proceedings of the 22nd International Conference on Data Engineering (ICDE '06).Washington, DC, USA: IEEE Computer Society, 2006: 1-24. 被引量:1
  • 3Xiao Xiaokui, Tao Yufei. m-invariance: towards privacy preserving re-pubhcation of dynamic datasets[C]//Pro- ceedings of the 2007 ACM SIGMOD International Con-ference on Management of Data (SIGMOD '07). New York, NY, USA: ACM, 2007: 689-700. 被引量:1
  • 4Ghinita G, Karras P, Kalnis P, et al. Fast data anonymiza- tion with low information loss[C]//Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB '07), 2007: 758-769. 被引量:1
  • 5Li Jiexing, Tao Yufei, Xiao Xiaokui. Preservation of proxi- mity privacy in publishing numerical sensitive data[C]// Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD '08). New York, NY, USA: ACM, 2008: 473-486. 被引量:1
  • 6Li Ninghui, Li Tiancheng, Venkatasubramanian S. t- closeness: privacy beyond k-anonymity and /-diversity[C]//Proceedings of the 23rd International Conference on Data Engineering (ICDE '07). Washington, DC, USA: IEEE Computer Society, 2007:106-115. 被引量:1
  • 7Meyerson A, Williams R. On the complexity of optimal k-anonymity[C]//Proceedings of the 23rd ACM SIGMOD- SIGACT-SIGART Symposium on Principles of Database Systems (PODS '04). New York, NY, USA: ACM, 2004: 223-228. 被引量:1
  • 8Aggarwal G, Feder T, Kenthapadi K, et al. Anonymizing tables[C]//LNCS 3363: Proceedings of the 10th Interna- tional Conference on Database Theory (ICDT '05), Edin-burgh, UK, January 5-7, 2005. [S.1.]: Springer-Verlag, 2005: 246-258. 被引量:1
  • 9LeFevre K, DeWitt D J, Ramakrishnan R. Incognito: effi- cient full-domain k-anonymity[C]//Proceedings of the 2005ACM SIGMOD International Conference on Management of Data (SIGMOD '05). New York, NY, USA: ACM, 2005: 49-60. 被引量:1
  • 10Bayardo R J, Agrawal R. Data privacy through optimal k-anonymization[C]//Proceedings of the 21st International Conference on Data Engineering (ICDE '05). Washington,DC, USA: IEEE Computer Society, 2005: 217-228. 被引量:1

同被引文献13

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部