期刊文献+

飞机复合材料构件损伤图像重构算法研究

Study on Image Reconstruction Algorithm for Damages of Composite Component on Aircraft
下载PDF
导出
摘要 针对飞机复合材料构件损伤的图像重构问题,对免疫算法和粒子群算法的混合算法进行了研究。以同面多电极系统为平台,利用有限元分析方法求解电容层析成像的正问题,得到灵敏度矩阵,并将灵敏度矩阵由有限元剖分域转换到图像重构域;混合算法将像素灰度向量作为粒子,利用粒子群优化算法进行寻优,并利用免疫算法进行粒子克隆、突变和抑制,避免粒子群陷入局部最优解;仿真结果表明,混合算法在60代左右达到收敛,而基本粒子群算法在100代仍未收敛;因此,混合算法能够以较好的精度和速度重构出损伤灰度图像。 Aiming at image reconstruction for damages of composite component on aircraft , a hybrid algorithm integrated IA with PSO is studied. On the platform of uniptanar multi--eleetrode system, the positive problem of ECT is solved by finite element analysis and sensi- tivity matrix is calculated. Then sensitivity matrix is converted from finite element mesh to image reconstruction mesh. In the hybrid algo- rithm, pixel vector is taken for particle. PSO is used to seek the optimum. Clone, mutation and inhibition are used to avoid partial optimum. Simulation results show that, the hybrid algorithm convergence is reaehed at about 60 generations, but the PSO eonvergence is still not reached at 100 generations. So damaged section image can be reconstructed with better accuracy at a higher speed using the hybrid algorithm.
出处 《计算机测量与控制》 北大核心 2013年第8期2152-2154,共3页 Computer Measurement &Control
关键词 同面多电极系统 图像重构算法 免疫算法 粒子群优化算法 uniplanar multi--electrode system image reconstruction algorithm IA PSO
  • 相关文献

参考文献14

二级参考文献95

  • 1莫宏伟,吕淑萍,管凤旭,徐立芳,叶秀芬,马忠丽,王辉.基于人工免疫网络记忆的新型分类器研究[J].计算机工程与应用,2004,40(36):28-32. 被引量:17
  • 2孙斌,周云龙.基于支持向量机和小波包能量特征的气液两相流流型识别方法[J].中国电机工程学报,2005,25(17):93-99. 被引量:48
  • 3BARBER D C, BROWN B H. Applied potential tomography[J]. Journal of Physics E: Scientific Instruments, 1984, 17(9):723-733. 被引量:1
  • 4CHENEY M, ISAACSON D. Issues in electrical impedance imaging [J]. Computing in Science and Engineering, 1995,2(4) : 53-62. 被引量:1
  • 5YORKEY T J, WEBSTER J G, TOMPKINS W J, et al. Comparing reconstruction algorithm for electrical impedance tomography [ J ]. IEEE Transactions on Biomedical Engineering, 1987, 34 (11): 843-852. 被引量:1
  • 6KAO T J, KIM B S, ISAACSON D, et al. Reducing boundary effects in statics EIT imaging [ J]. Physiological Measurement, 2006,27(5) : 13-23. 被引量:1
  • 7KENEDY J, EBERHART R. Particle optimization, neural networks [C ]// 1995 IEEE International Conference on Neural Networks, November 27-December 1, University of Western Australia, Perth, Australia. [S. l.]: Institute of Electrical & Electronics Engineer , 1995 : 1942-1948. 被引量:1
  • 8ZENG J C, JIE Q, CUN Z H. Particle swarm optimization algorithm[M]. Beijing: Science publishing Company, 2004. 被引量:1
  • 9YANG G Y. A modified particle swarm optimizer algorithm [ C/OL ]// The Eighth International Conference on Electronic Measurement and Instrument, Xi'an, July 18 August 16,2007[2007-10-22]. http:// ieeexplore. ieee. org/xpls/abs. all. jsp? arnumber =4350772. 被引量:1
  • 10JIA D L, LI L H,ZHANG Y Q,etal. Particle swarm optimization combined with chaotic and gaussian mutation [C/OL]//Processings of the 6^th World Congress on Intelligent Control and Automation, Dalian, June 21-23, 2006[ 2006-10-23 ]. http:// ieeexplore. ieee. org/xpls/abs_all. jsp? arnumber =1712974. 被引量:1

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部